博碩士論文 982212011 完整後設資料紀錄

DC 欄位 語言
DC.contributor照明與顯示科技研究所zh_TW
DC.creator鍾穎昌zh_TW
DC.creatorYing-Chang Chungen_US
dc.date.accessioned2011-8-24T07:39:07Z
dc.date.available2011-8-24T07:39:07Z
dc.date.issued2011
dc.identifier.urihttp://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=982212011
dc.contributor.department照明與顯示科技研究所zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract本文使用光激發螢光影像技術,量測載子生命週期、擴散長度和特徵 串聯電阻。短路狀態時,單晶矽太陽能電池會因不同光強造成不同的螢光、 光電壓與光電流,此時便可利用短路螢光模型計算出載子生命週期影像、 光電壓影像與光電流影像,而擴散長度與載子生命週期有關,由此便可得 到擴散長度影像,最後載子生命週期也可推算出j-V 曲線,再藉由j-V 曲 線取其斜率便可計算出特徵串聯電阻影像。而載子生命週期影像帄均值約 為2.56*10^-5 sec,誤差百分比帄均則約為0.69 %;特徵串聯電阻影像帄均 值約為1.42 Ω*cm^2,誤差百分比帄均則約為0.35 %。為了驗證此量測法的 正確性,分別地使用入射光強度為0.82 W/cm^2與0.67 W/cm^2得到各別的 載子生命週期與特徵串聯電阻影像,將載子生命週期影像相除的結果帄均 值為1.05,其標準差為0.14;特徵串聯電阻影像相除的結果帄均值為1.02 , 其標準差為0.07,所以由標準差可知空間中的每個像素是與入射光無關的, 因此證明了這量測方法的正確性。接著再藉由入射光強度為0.82 W/cm^2 的 載子生命週期影像計算擴散長度影像,而擴散長度影像又分為n 型半導體 的電子與電洞擴散長度影像、p 型半導體的電子與電洞擴散長度影像,其帄 均值各別為66 μm、92 μm、289 μm、165 μm。 zh_TW
dc.description.abstractThe article uses photoluminescence imaging technology to measure excess carrier lifetime, diffusion length and specific series resistance. Crystalline silicon solar cells has different photoluminescence, photovoltage and photocurrent because of different illumination result in the short-circuit state, we can use PL module in the short-circuit to calculate excess carrier lifetime imaging, photovoltage imaging and photocurrent imaging. The relationship between excess carrier lifetime and diffusion length, so we can obtain diffusion length imaging by excess carrier lifetime imaging. Finally, excess carrier lifetime can calculate the j-v curve, so we can obtain specific series resistance by the slope of j-v curve. Excess carrier lifetime imaging average is about 2.56*10^-5 sec , percentage error average is about 0.69 %, specific series resistance imaging average is about1.42 Ω*cm^2 , percentage error average is about0.35 %. In order to verify the correctness of this measurement method, we choose two illumination intensity at 0.82 W/cm^2 and 0.67 W/cm^2 , and then we obtain two excess carrier lifetime imaging and two specific series resistance imaging. We divide a excess carrier lifetime imaging by another excess carrier lifetime imaging, and specific series resistance imaging is the same. Average value of the results are about 1.05±0.14 and 1.02±0.07, we can know that each pixel is independent of illumination intensity by standard deviations, so we verify the correctness of this measurement method. On the illumination intensity is 0.82 W/cm^2 ,we use excess carrier lifetime imaging to calculate diffusion length imaging, the diffusion length imaging is divided into electron and hole iii diffusion length imaging of the n-type semiconductor, electron and hole diffusion length imaging of the p-type semiconductor, average value of the results are 66 μm,92 μm,289 μm,165 μm. en_US
DC.subject特徵串聯電阻zh_TW
DC.subject額外載子生命週期zh_TW
DC.subject螢光量測zh_TW
DC.subject擴散長度zh_TW
DC.subjectphotoluminescence measurementen_US
DC.subjectexcess carrier lifetimeen_US
DC.subjectspecific series resistanceen_US
DC.subjectdiffusion lengthen_US
DC.title以螢光訊號量測單晶矽太陽能電池物理參數之空間分布zh_TW
dc.language.isozh-TWzh-TW
DC.titleSpatial distribution measurement of physical parameters for crystalline silicon solar cells using photoluminescence signalen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明