DC 欄位 |
值 |
語言 |
DC.contributor | 電機工程學系 | zh_TW |
DC.creator | 林毓誠 | zh_TW |
DC.creator | Yu-cheng Lin | en_US |
dc.date.accessioned | 2011-7-26T07:39:07Z | |
dc.date.available | 2011-7-26T07:39:07Z | |
dc.date.issued | 2011 | |
dc.identifier.uri | http://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=985201062 | |
dc.contributor.department | 電機工程學系 | zh_TW |
DC.description | 國立中央大學 | zh_TW |
DC.description | National Central University | en_US |
dc.description.abstract | 近年來電力的需求逐年上升,導致大量的自然資源花費並且排放大量的二氧化碳造成溫室效應。由於自然資源有限,人們必需更加有效率地利用資源去節省能源的損耗。
功率元件被大量地被使用在相當多領域,包括消費性電子、電源供應器、工業馬達驅動、火車及汽車電子等。為了要節省能源,可藉由降低功率半導體的功率損耗來達成。其中IGBT隨著技術的進步,促使了其應用範圍擴展到高頻與更高功率的領域。然而在台灣卻很少人投入IGBT的研究且無產品量產上市。
本論文將針對IGBT進行研究,而IGBT的發展主要是在於如何有效地降低導通壓降與提升關閉速度,來降低整體功率損耗。近年來改善IGBT的特性主要是藉由載子密度增加技術、降低從集極端電洞注入與增加載子生命週期等方向著手。本論文將對於這些技術進行探討,因而提出了新型的溝渠式載子儲存絕緣閘雙極性電晶體(CSTBT)且搭配場終止(Field-Sop)結構設計,而此設計主要是有關於CSTBT新的設計概念,為使用砷離子摻雜來形成載子儲存層且額外使用到磊晶製程。經由Tsuprem4與Medici模擬進行設計,結果顯示達到600 V耐壓的IGBT,且相較於無載子儲存層的FS-IGBT導通壓降低了0.42 V,約降低29 %的導通壓降,與低關閉下降時間34 ns。此結構也具有抑制傳統CSTBT臨限電壓變動的特性。最後也針對新型CSTBT提升其短路能力做出適當的設計。
| zh_TW |
dc.description.abstract | In recently years, global electric demand is rising year by year, it result in a great mount of natural resource cost and emission of carbon dioxide causing greenhouse effect. Due to limited natural resources, people need to utilize efficiently these resources to economize the energy.
Using huge power semiconductor in a lot of field in consumer electronics, power supply, industrial motor drives, trains and car electronics. For saving energy, the power loss of power semiconductor need to reduce. Especially the progress of IGBT technology, it promote IGBT enhancement applied range of high frequency and high power. However, few people study IGBT and have no production in Taiwan.
This thesis carrier on research to IGBT. The development of IGBT mainly lies in how to reduce the on-state voltage and switching loss. Improve the performance of IGBT is realized by the carrier density enhancement technology, reduction of the collector side injection and long carrier lifetime. Therefore, this thesis focuses on these technologies to study. The proposed of the new CSTBT(Carrier Store Trench-Gate Bipolar Transistor)with the Field-Stop structure about a new design concept of CSTBT. The concept about using the Arsenic forms the carrier-store N layer and additional epi process. Consequently, we design a 600V IGBT that the on-state voltage is reduced almost 29 % compare with FS-IGBT and low turn-off fall time 34ns by the two-dimensional simulator Tsuprem4 and Medici. And new CSTBT has uniformity of threshold voltage character. Finally to improve new CSTBT short-circuit capability is designed.
| en_US |
DC.subject | 功率元件 | zh_TW |
DC.subject | 絕緣閘雙極性電晶體 | zh_TW |
DC.subject | CSTBT | en_US |
DC.subject | IGBT | en_US |
DC.title | 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計 | zh_TW |
dc.language.iso | zh-TW | zh-TW |
DC.title | A Design of 600 V New Carrier Store Trench-gate BipolarTransistor (CSTBT) | en_US |
DC.type | 博碩士論文 | zh_TW |
DC.type | thesis | en_US |
DC.publisher | National Central University | en_US |