博碩士論文 993209004 完整後設資料紀錄

DC 欄位 語言
DC.contributor材料科學與工程研究所zh_TW
DC.creator曾耀田zh_TW
DC.creatorYao-Tien Tsengen_US
dc.date.accessioned2012-7-17T07:39:07Z
dc.date.available2012-7-17T07:39:07Z
dc.date.issued2012
dc.identifier.urihttp://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=993209004
dc.contributor.department材料科學與工程研究所zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract本論文研究不同於傳統的積體電路 IC製程及一般微機電系統製程技術,而以影像式微陽極導引電鍍法為基礎,結合奈米氧化鋅半導體電鍍技術,創造出表面披覆奈米氧化鋅之銅微柱複合元件。本研究重點在於如何利用電化學法在銅微柱表面披覆氧化鋅奈米結構物,並依據參數之控制,析鍍出各種形貌不同之奈米柱結構。 金屬銅微柱依製程之不同,可分為間歇式微電鍍與連續式之影像導引微電鍍,本研究選擇以後者作為銅微柱之製程,主要理由為連續式導引微電鍍可製作出品質精細、表面平滑與結構均勻之銅微柱,可允許氧化鋅以電化學法披覆於表面,間歇式微電鍍之優點為速度較快,但其結構粗糙之缺點使氧化鋅不易均勻成長。 氧化鋅之電化學製程參數可分為沉積電位、時間、與前驅物雙氧水濃度作為形貌與結構之探討。陰極動態極化掃描顯示在電位-0.9 V(vs. Ag/AgCl)為極限電流出現,經由掃描式電子顯微鏡觀察確實在此電位時沉積得到較佳之表面形貌。沉積時間為10 分鐘時得到第一層之氧化鋅柱,當時間增加為20分鐘得到互相堆疊且無定向成長之氧化鋅柱狀結構。前驅物雙氧水濃度為5 mM時氧化鋅成米粒狀之形貌,當濃度提升至20 mM時為六方堆積之氧化鋅柱,由XRD分析證實不同濃度之產物皆為氧化鋅之纖鋅礦結構,但由化學分析電子能譜儀(ESCA)分析在較高濃度雙氧水所得到之奈米柱含有較多之Zn(OH)2存在,顯示前驅物濃度為影響氧化鋅形貌之關鍵。摻錫之氧化鋅經微區元素分析(EDS)與化學分析電子能譜證實錫原子由電化學法摻雜,並經由XRD分析顯示並無其他不純物如金屬錫及二氧化錫存在,顯示電化學沉積法摻雜亦為一可行之辦法。 zh_TW
dc.description.abstractThe micron-size metal columns, in an average diameter of 80 μm, have been prepared from a bath of copper sulfate by a novel method. This new technique of micro-electroplating system guided continuously by real-time imaging is different from the traditional technology used IC fabrication and MEMS process. The copper micro column is suitable for electrodepositing ZnO structure due to their smooth surface and fine structure. In this work, electrodeposition of nano ZnO homogeneously coated on the Cu-micro-column by controlling the experimental parameters and carried out with a three-electrode electroplating system was investigated. Surface morphology of the nano ZnO coating was determined by the experimental parameters such as deposition potential, bath composition and deposition time. By means of potentiodynamically cathodic polarization, we found this electroplating at -0.9 V (vs. Ag / AgCl) revealed a limiting current to grow ZnO nano-rod in good surface morphology through examination by the scanning electron microscope (SEM). With increasing the deposition time from 10 minutes to 20 minutes, a dense ZnO film was deposited and grown in non-directions growth. The morphologies of ZnO nano-rod tended to form in hexagonal nano-rod with increasing the H2O2 concentration for 5 mM to 20 mM. The X-Ray Diffraction confirms that all the ZnO prepared in differernt H2O2 concentration were wurtzite textured on (101).The deposited ZnO nano rods have been studied by electron spectroscopy for chemical analysis to identify the chemical bonding in the different H2O2 concentration. They consisted of major Zn(OH)2 covered on the ZnO deposited with the presence of concentrated H2O2. Tin-doped ZnO was examined through energy dispersive spectrometer (EDS) and ESCA to confirm prepared and the tin atoms into ZnO with the electrochemical deposition. The XRD analysis revealed no other impurities phase such as the existence of metal tin and tin dioxide (SnO2), doping by the electrochemical deposition has been proven to be a feasible approach. en_US
DC.subject連續式影像導引微電鍍zh_TW
DC.subject陰極極化掃描zh_TW
DC.subject銅微柱zh_TW
DC.subject氧化鋅zh_TW
DC.subject氧化鋅摻錫zh_TW
DC.subjectreal-time imaging guided continuously micro-elecen_US
DC.subjectpotentiodynamic cathodic polarizationen_US
DC.subjectCu micro columnen_US
DC.subjectZnOen_US
DC.subjecttin-doped ZnOen_US
DC.title銅微柱表面之電化學析鍍氧化鋅奈米結構研究zh_TW
dc.language.isozh-TWzh-TW
DC.titleElectrochemical deposition of ZnO nano structures on a copper micro-columnen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明