博碩士論文 100331007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:34.239.179.228
姓名 郭儒哲( Ju-Che Kuo)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 以益智遊戲進行空間工作記憶訓練在事件相關電位P3上的影響
(Effects of puzzle game based spatial working memory training:an ERP P3 study)
相關論文
★ 足弓指標參數之比較分析★ 運用腦電波研究中風病人的復健成效 與持續情形
★ 重複間斷性Theta爆發刺激對手部運動之腦波的影響★ Amylose mediated electricity production of Staphylococcus epidermidis for inhibition of Cutibacterium acnes growth
★ 使用虛擬實境系統誘發事件相關電位P300之研究★ 虛擬實境誘發體感覺事件相關電位P300之動態因果模型研究
★ 使用GPU提升事件相關電位之動態因果模型的運算效能★ 基於動態因果模型之老化相關的運動網路研究
★ 應用腦電圖預測中風病人復健情況★ 基於虛擬實境復健之中風後運動網路功能性重組研究
★ 應用腦電圖與相關臨床因子預測中風病人復原之研究★ 中風復健後與虛擬實境物理參數 相關的動作網絡重組
★ 以運動指標預測復健成效暨設計復健方針★ 運用時頻轉換分析方法研究 工作記憶訓練之人類大腦可塑性
★ 中風患者在復健後的大腦神經連結的變化★ 運用N-back任務和空間工作記憶訓練分析神經相關性能之ERP和DCM研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
工作記憶是個能同時儲存與處理複雜認知功能所需訊息且有結構的系統。我們對工作記憶有興趣是因為其容量與流體智力有高度相關性。近年有研究指出藉由適當的訓練,工作記憶容量的進步會反映在作業表現或智力測驗分數上。儘管如此,在相關的行為研究中尚未獲得一致的結果,仍然有學者抱持相反的意見。其中一個關鍵原因可能在於,認知訓練的成效也許不是以智力測驗成績的提升來表現之,換句話說,行為表現(智力測驗成績)是間接的量測,可能沒有完全反應神經生理的改變,因此,本研究希望能從事件相關電位P300中找出能客觀量化的指標,用來評估工作記憶訓練的成效。
本研究招募二十個中央大學的學生並隨機分配成兩組,實驗組與對照組各十人。實驗組被要求進行一個與spatial span作業相似的益智遊戲,為期三週,每週五日,每日三十分鐘。對照組則進行與記憶無關的動作控制遊戲,訓練頻率與實驗組同。於訓練期間,每位受試者都將進行五次(訓練前、訓練一週、訓練兩週、訓練三週、結束一週後)四種難度的空間n-back作業(n=0, 1, 2, 3.),並同時記錄腦電波。反應時間和準確率等行為數據將會在實驗結束後進行離線處理。除了P300振幅,高記憶負荷(3-back)與低難度(0-back)之間於頂葉區的振幅比(以R表示) 與振幅比隨訓練的變化(以R表示)也會被計算出並加入統計分析。
重複量數變異數分析的統計結果顯示,組間差異在行為數據、P300振幅和比值R中皆未達顯著,可能是由於微弱的訓練成效無法被線性的方法找到。在統計結果中只有R(每週減去訓練前)有顯著的組間差異:實驗組的平均R在訓練後大於對照組,表示此記憶訓練確實會影響神經活化,並且在訓練停止後維持至少一週。在未來的工作中,我們會繼續找出此訓練成效之下的神經機制。
摘要(英) Working memory (WM) is the structured system which can simultaneously maintain and manipulate information for complex cognitive behavior. The capacity of WM is of interest because it was thought to be related to fluid intelligence. Recent studies have shown that working memory capacity can be improved by adequate training as reflected in greater task performance / standardized intelligence scores (IQ scores). Neuroimaging studies have further shown that there are greater activities after WM training in the prefrontal and parietal cortex and these higher activities are associated with the facilitatory effect on striatal dopamine release. Nevertheless, results from behavioral studies were inconsistent. In this study, we aimed to find a direct estimate of WM training effect by P300.
Twenty healthy college students were recruited and randomly divided into two groups (Experimental and Control, 10 each). Experimental group was asked to play a spatial span task-liked puzzle game 30 minutes a day, 5 days a week for 3 weeks while control group underwent a movement related game in the same training frequency. EEG data from all subjects were recorded during n-back tasks (n=0,1,2,3) at different training phases (pre-test, 1 week, 2 weeks, 3 weeks, follow-up). The behaviour data during the task like reation time and accuracy were computed offline. The P300 amplitudes ratio, the P300 ratio at Pz between high (3-back) and low (0-back) working memory load (denoted as R) and the changes of R in response to training (denoted as R) were calculated. Both the behaviour and EEG data and entered repeated measurement ANOVA for statistic test.


The statistic test on the behaviour data, P300, and R shows no significant difference between two groups,implying a subtle training effect that may not be captured by linear methods. The only statistical result confirmed there is a significant difference of R between two groups (each week minus pre-test) is R: The mean R of the experimental group became greater than that of the control group after memory training, suggesting an effective training and this training effect could stay at least one week after training. In a future study, we will be looking for the mechanisms underlying these training changes.
關鍵字(中) ★ 工作記憶訓練
★ P300
★ 空間n-back作業
關鍵字(英)
論文目次 第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 2
第三節 論文架構 2
第二章 文獻回顧 4
第一節 工作記憶 4
工作記憶簡介 4
工作記憶可塑性 6
工作記憶與流體智力 8
第二節 事件相關電位P300 10
事件相關電位 10
P300簡介 11
影響P300的因素 14
第三節 工作記憶與P300 16
馮‧雷斯托夫效應與隨後記憶效應 16
工作記憶負荷降低P300振幅 17
第三章 研究方法 19
第一節 實驗設計 19
第二節 實驗器材 20
第三節 腦電波實驗 21
第四節 訓練作業 23
第五節 數據分析 26
第四章 實驗結果 30
第一節 行為資料結果 30
第二節 腦電波數據 32
第五章 討論與結論 38
第一節 行為資料 38
第二節 記憶訓練對頂葉區P300振幅的影響 39
第三節 受試者內資料轉型 40
第四節 記憶訓練對P300振幅比的影響 41
第五節 結論 42
第六章 未來展望 43
第一節 實驗設計的改進 43
第二節 腦電波數據的延伸分析 43
第三節 實驗儀器 44
第七章 參考文獻 45
附錄 54
參考文獻 第七章參考文獻
Awh, E., Anllo-Vento, L., & Hillyard, S. A. (2000). The role of spatial selective attention in working memory for locations: Evidence from event-related potentials. Journal of Cognitive Neuroscience, 12(5), 840–847.
Backman, L., Nyberg, L., Soveri, A., Johansson, J., Andersson, M., Dahlin, E., … Rinne, J. O. (2011). Effects of working-memory training on striatal dopamine release. Science, 333(6043), 718–718.
Baddeley, A. (2003). Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4(10), 829–839.
Buschkuehl, M., Jaeggi, S. M., & Jonides, J. (2012). Neuronal effects following working memory training. Developmental Cognitive Neuroscience, 2, S167–S179.
Chang, H. C., Lee, P. L., & Wu, C. H. (2010). Empirical Mode Decomposition (EMD)–Based Spatiotemporal Approach for Single-Trial Extraction of Post-Movement MEG Beta Synchronization. In World Congress on Medical Physics and Biomedical Engineering, September 7-12, 2009, Munich, Germany (pp. 1091–1094). Retrieved from http://link.springer.com/chapter/10.1007/978-3-642-03882-2_290
Chooi, W.-T., & Thompson, L. A. (2012). Working memory training does not improve intelligence in healthy young adults. Intelligence, 40(6), 531–542.
Conway, A. R., Kane, M. J., & Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. Trends in Cognitive Sciences, 7(12), 547–552.
Covington, J. W., & Polich, J. (1996). P300, stimulus intensity, and modality. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 100(6), 579–584. doi:10.1016/S0168-5597(96)96013-X
Cowan, N. (2001). The magical number 4 in short-term memory: a reconsideration of mental storage capacity. The Behavioral and Brain Sciences, 24(1), 87–114; discussion 114–185.
Dahlin, E., Neely, A. S., Larsson, A., Backman, L., & Nyberg, L. (2008). Transfer of learning after updating training mediated by the striatum. Science, 320(5882), 1510–1512.
De Fockert, J. W., Rees, G., Frith, C. D., & Lavie, N. (2001). The role of working memory in visual selective attention. Science, 291(5509), 1803–1806.
Donchin, E. (1981). Surprise!… surprise? Psychophysiology, 18(5), 493–513.
Duncan, C. C., Barry, R. J., Connolly, J. F., Fischer, C., Michie, P. T., Naatanen, R., … Van Petten, C. (2009). Event-related potentials in clinical research: Guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clinical Neurophysiology, 120(11), 1883–1908. doi:10.1016/j.clinph.2009.07.045
Duncan?Johnson, C. C., & Donchin, E. (2007). On Quantifying Surprise: The Variation of Event?Related Potentials With Subjective Probability. Psychophysiology, 14(5), 456–467. doi:10.1111/j.1469-8986.1977.tb01312.x
Fabiani, M., Karis, D., & Donchin, E. (1990). Effects of mnemonic strategy manipulation in a Von Restorff paradigm. Electroencephalography and Clinical Neurophysiology, 75(1), 22–35.
Ford, J. M., Roth, W. T., & Kopell, B. S. (1976). Auditory Evoked Potentials to Unpredictable Shifts in Pitch. Psychophysiology, 13(1), 32–39. doi:10.1111/j.1469-8986.1976.tb03333.x
Ford, J. M., Sullivan, E. V., Marsh, L., White, P. M., Lim, K. O., & Pfefferbaum, A. (1994). The relationship between P300 amplitude and regional gray matter volumes depends upon the attentional system engaged. Electroencephalography and Clinical Neurophysiology, 90(3), 214–228.
Goodin, D. S., Squires, K. C., Henderson, B. H., & Starr, A. (1978). Age-related variations in evoked potentials to auditory stimuli in normal human subjects. Electroencephalography and Clinical Neurophysiology, 44(4), 447–458. doi:10.1016/0013-4694(78)90029-9
Hirayasu, Y., Samura, M., Ohta, H., & Ogura, C. (2000). Sex effects on rate of change of P300 latency with age. Clinical Neurophysiology, 111(2), 187–194. doi:10.1016/S1388-2457(99)00233-3
Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences, 105(19), 6829–6833.
Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Shah, P. (2011). Short-and long-term benefits of cognitive training. Proceedings of the National Academy of Sciences, 108(25), 10081–10086.
Jau?ovec, N., & Jau?ovec, K. (2012). Working memory training: Improving intelligence–Changing brain activity. Brain and Cognition, 79(2), 96–106.
Karis, D., Fabiani, M., & Donchin, E. (1984). “P300” and memory: Individual differences in the von Restorff effect. Cognitive Psychology, 16(2), 177–216.
Katayama, J., & Polich, J. (1999). Auditory and visual P300 topography from a 3 stimulus paradigm. Clinical Neurophysiology, 110(3), 463–468. doi:10.1016/S1388-2457(98)00035-2
Kiss, M., Van Velzen, J., & Eimer, M. (2008). The N2pc component and its links to attention shifts and spatially selective visual processing. Psychophysiology, 45(2), 240–249.
Klingberg, T. (2006). Development of a superior frontal–intraparietal network for visuo-spatial working memory. Neuropsychologia, 44(11), 2171–2177.
Klingberg, T. (2010). Training and plasticity of working memory. Trends in Cognitive Sciences, 14(7), 317.
Klingberg, T., Forssberg, H., & Westerberg, H. (2002). Increased brain activity in frontal and parietal cortex underlies the development of visuospatial working memory capacity during childhood. Journal of Cognitive Neuroscience, 14(1), 1–10.
Kok, A. (2001). On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology, 38(3), 557–577.
Kundu, B., Sutterer, D. W., Emrich, S. M., & Postle, B. R. (2013). Strengthened effective connectivity underlies transfer of working memory training to tests of short-term memory and attention. The Journal of Neuroscience, 33(20), 8705–8715.
LaBar, K. S., Gitelman, D. R., Parrish, T. B., & Mesulam, M. (1999). Neuroanatomic overlap of working memory and spatial attention networks: a functional MRI comparison within subjects. Neuroimage, 10(6), 695–704.
Linden, D. E. J. (2005). The P300: Where in the Brain Is It Produced and What Does It Tell Us? The Neuroscientist, 11(6), 563–576. doi:10.1177/1073858405280524
Luck, S. J., Woodman, G. F., & Vogel, E. K. (2000). Event-related potential studies of attention. Trends in Cognitive Sciences, 4(11), 432–440. doi:10.1016/S1364-6613(00)01545-X
McKendrick, R., Ayaz, H., Olmstead, R., & Parasuraman, R. (2013). Enhancing Dual-Task Performance with Verbal and Spatial Working Memory Training: Continuous Monitoring of Cerebral Hemodynamics with NIRS. NeuroImage. Retrieved from http://www.sciencedirect.com/science/article/pii/S1053811913006058
McNab, F., Varrone, A., Farde, L., Jucaite, A., Bystritsky, P., Forssberg, H., & Klingberg, T. (2009). Changes in cortical dopamine D1 receptor binding associated with cognitive training. Science Signalling, 323(5915), 800.
Melby-Lervaag, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic review. Developmental Psychology, 49(2), 270.
Mervaala, E., Paakkonen, A., & Partanen, J. V. (1988). The influence of height, age and gender on the interpretation of median nerve SEPs. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 71(2), 109–113. doi:10.1016/0168-5597(88)90068-8
Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological Review, 63(2), 81.
Olesen, P. J., Westerberg, H., & Klingberg, T. (2003). Increased prefrontal and parietal activity after training of working memory. Nature Neuroscience, 7(1), 75–79.
Picton, T. W., & Stuss, D. T. (1980). The Component Structure of the Human Event-Related Potentials. In Progress in Brain Research (Vol. Volume 54, pp. 17–49). Elsevier. Retrieved from http://www.sciencedirect.com/science/article/pii/S0079612308616040
Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128–2148. doi:10.1016/j.clinph.2007.04.019
Polich, J., & Heine, M. R. D. (1996). P300 topography and modality effects from a single?stimulus paradigm. Psychophysiology, 33(6), 747–752. doi:10.1111/j.1469-8986.1996.tb02371.x
Polich, J., Howard, L., & Starr, A. (1985). Effects of Age on the P300 Component of the Event-Related Potential From Auditory Stimuli: Peak Definition, Variation, and Measurement. Journal of Gerontology, 40(6), 721–726. doi:10.1093/geronj/40.6.721
Polich, J., & Kok, A. (1995). Cognitive and biological determinants of P300: an integrative review. Biological Psychology, 41(2), 103–146. doi:10.1016/0301-0511(95)05130-9
Salazar, R. F., Dotson, N. M., Bressler, S. L., & Gray, C. M. (2012). Content-specific fronto-parietal synchronization during visual working memory. Science, 338(6110), 1097–1100.
Schlogl, A., Keinrath, C., Zimmermann, D., Scherer, R., Leeb, R., & Pfurtscheller, G. (2007). A fully automated correction method of EOG artifacts in EEG recordings. Clinical Neurophysiology, 118(1), 98–104.
Squires, N. K., Squires, K. C., & Hillyard, S. A. (1975). Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalography and Clinical Neurophysiology, 38(4), 387–401. doi:10.1016/0013-4694(75)90263-1
Sutton, S., Braren, M., Zubin, J., & John, E. R. (1965). Evoked-Potential Correlates of Stimulus Uncertainty. Science, 150(3700), 1187–1188. doi:10.1126/science.150.3700.1187
Takeuchi, H., Sekiguchi, A., Taki, Y., Yokoyama, S., Yomogida, Y., Komuro, N., … Kawashima, R. (2010). Training of working memory impacts structural connectivity. The Journal of Neuroscience, 30(9), 3297–3303.
Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima, A., & Kawashima, R. (2011). Working memory training using mental calculation impacts regional gray matter of the frontal and parietal regions. PLoS One, 6(8), e23175.
Thompson, T. W., Waskom, M. L., Garel, K.-L. A., Cardenas-Iniguez, C., Reynolds, G. O., Winter, R., … Alvarez, G. A. (2013). Failure of working memory training to enhance cognition or intelligence. PloS One, 8(5), e63614.
Verleger, R. (2008). P3b: Towards some decision about memory. Clinical Neurophysiology, 119(4), 968–970. doi:10.1016/j.clinph.2007.11.175
Von Bastian, C. C., & Oberauer, K. (2013). Effects and mechanisms of working memory training: a review. Psychological Research, 1–18.
Watter, S., Geffen, G. M., & Geffen, L. B. (2001). The n-back as a dual-task: P300 morphology under divided attention. Psychophysiology, 38(6), 998–1003.
Weis, S., Klaver, P., Reul, J., Elger, C. E., & Fernandez, G. (2004). Temporal and cerebellar brain regions that support both declarative memory formation and retrieval. Cerebral Cortex, 14(3), 256–267.
Woods, D. L., & Courchesne, E. (1986). The recovery functions of auditory event-related potentials during split-second discriminations. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 65(4), 304–315. doi:10.1016/0168-5597(86)90009-2
Zhao, X., Zhou, R., & Fu, L. (2013). Working Memory Updating Function Training Influenced Brain Activity. PloS One, 8(8), e71063.
指導教授 陳純娟(Chun-Chuan Chen) 審核日期 2014-1-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明