博碩士論文 79226007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.231.229.89
姓名 伍茂仁( Mao-Ren Wu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以保角映射法為基礎之等效波導理論:理想光波導之設計與分析
(Equivalent Waveguide Theory Based on ConformalMapping Method: Design and Analysis of IdealOptical Waveguides)
相關論文
★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究★ P型氮化鎵歐姆接觸製作研究
★ 應用聚對位苯基乙烯高分子材料製作有機發光二極體★ 氮離子佈植於氮化鎵之特性研究
★ 磷化銦鋁鎵/砷化鎵/砷化銦鎵對稱型平面摻雜場效電晶體研究★ 1550 nm 直調式光纖有線電視長距離傳輸系統
★ 銦鋅氧化膜基本特性及其與氮化鎵接觸應用之研究★ 氮化鎵藍色發光二極體透明電極之製作與研究
★ 透明導電膜與氮化鎵接觸特性研究★ 連續時間電流式濾波與振盪電路設計與合成
★ 氮化鋁鎵/氮化鎵異質接面金屬-半導體-金屬光檢測器之研究★ 陣列波導光柵波長多工器設計與分析
★ 室溫沈積高穩定性之氮化矽薄膜及其光激發光譜研究★ 雙向混合DWDM系統架構在80-km LEAF上傳送CATV和OC-48信號
★ N型氮化鎵MOS元件之製作與研究★ 矽離子佈植於p型氮化鎵之特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本論文中,我們提出一個新的等效波導理論,並用以
研究在傳播方向上有變化的光波導。藉由保角映射的空間轉
換觀念,我們可以將長直狀光波導轉換成包含彎曲波導、錐
狀波導及S 形彎曲錐狀波導等各種不同的理想結構。這些理
想光波導的特性將在論文中被徹底地探討。我們發現理想光
波導的形狀及折射率變化是具有連續性的。在理想彎曲波
導,其特徵模的波前在彎角處必須能正確地偏折,以避免幅
射損失的發生。在理想錐狀波導,其特徵模必須能逐漸而適
當地轉變,以避免誘發高階模態或幅射損失的發生。這些特
殊的物理特性將被應用於實際光波導的設計。
等效波導理論將被更進一步地用於分析光波導。藉由考
慮波前演化,等效波導理論將結合光束傳播法成為一個新的
數值工具,並可精確地分析大角度光波導。我們將以此數值
工具來分析兩種常見的錐狀波導,包含錐狀橫切面波導及固
定V 值錐狀波導。
我們將以彎曲波導及Y 形岔狀波導為例,將理想光波導
的物理機制應用於實際波導的設計。首先,我們提出多重相
位補償的觀念,並用以設計具有雙尖頂連接狀圓形光柵的低
損耗彎曲波導。雙尖頂連接狀圓形光柵不僅可以補償在彎角
處的相位差異,並可避免干擾特徵模態。模擬結果發現,在
大角度彎曲波導,其特徵模場的波前仍可正確地偏折。在彎
曲角度達10°的例子中,其能量的傳輸效率仍可達89﹪。
Y 形岔狀波導在傳播方向上有一個分岔點,因此不可能
去設計具有連續波導路徑的理想結構。在本論文中,一個考
量波前演化的相位補償法則將被提出,並用以設計大角度、
低損耗的Y 形岔狀波導。模擬結果發現,在大角度Y 形分岔
區域,良好的模態分離及低損耗特性可如預期地達成。在分
岔角度達20°的例子中,其能量的傳輸效率亦可達89﹪。
摘要(英) A novel equivalent waveguide theory for studying the longitudinally varying
waveguides has been proposed in this dissertation. By adopting the space
transformation concept based on the conformal mapping, a straight optical
waveguide is transformed into various ideal structures including bends, tapers, and
S-shaped bent tapers. The characteristics of these ideal optical waveguides are
thoroughly discussed in the dissertation. The shape and refractive -index distribution
are continuous in these ideal waveguides. The phase front can be correctly tilted in
the ideal bent waveguides without any radiation loss. The mode size can also be
gradually converted in the ideal tapered structures without mode conversion to
higher-order modes or to radiation modes taking place. These special physical
properties can be applied to design the practical waveguides.
Furthermore, the equivalent waveguide theory can be applied to analyze the
optical waveguides. Considering the phase-front evolution, the equivalent waveguide
theory is combined the beam propagation method to explicitly analyze the
wide-angle waveguides. Two kinds of popular tapered waveguides, including the
cross-sectional dimension tapering and the constant V-number tapering, are used to
analyze by the combination of conformal mapping method and beam propagation
method.
In order to apply the design rule of optical waveguides obtained from the
analysis of ideal structures, bent waveguides and Y branches are taken as examples.
First, a low-loss waveguide bend wi th two apexes-linked circle gratings based on the
concept of multiple phase-compensation is designed. The apexes-linked circle
gratings not only compensate the phase-difference in the bend corner but also avoid
distorting the eigenmode. Simulation results predict that the phase front of the
modal field can be tilted correctly in the wide-angle waveguide bend. The transmitted
power efficiency can be as high as 89% for bending angle up to 10°.
Since the Y branch has a branching point in propagation, it is impossible to
design an ideal Y branch with continuous waveguide path. In the dissertation, a novel
phase compensation rule is derived by taking the phase front evolution into
consideration to design the low-loss and wide-angle Y branch. Simulation results
predict that a perfect mode-separation with low branching losses can be achieved in
the wide -angle Y-junction branch. The transmitted power efficiency can be as high as
89% for the branching angle is up to 20°
論文目次 i
Abstract
Contents
List of Symbols
Table Captions
Figure Captions
Chapter 1 Introduction 1
Chapter 2 Equivalent Waveguide Theory 8
2-1. Introduction 8
2-2. Equivalent waveguide concepts 11
2-3. Conformation mapping method 15
2-4. Influence of equivalent waveguide on numerical
analysis
20
2-4.1. Spatial discretization 20
2-4.2. Beam propagation method 22
2-4.3. CMM-BPM 24
2-4.4. Relation of electric fields in two
corresponding spaces
25
2-5. Results and discussion 26
2-5.1. Cross-sectional dimension tapering 27
2-5.2. Constant V-number tapering 30
2-5.3. Wide-angle constant V-number taper 32
ii
2-6. Conclusion 33
Chapter 3 Complete Adiabatic Tapered Waveguides 35
3-1. Introduction 35
3-2. Analysis method 37
3-3. Results and discussion 42
3-3.1. Ideal tapered waveguides 43
3-3.2. Simulation results of transmission characteristics 44
3-3.3. Influence of curved phase-front effect 48
3-4. Conclusion 49
Chapter 4 Lossless Bends in Optical Waveguides 51
4-1. Introduction 51
4-2. Analysis method 54
4-3. Results and discussion 58
4-3.1. Comparing with proposed structures 59
4-3.2. Ideal structures for lossless bends with large bend
angle
62
4-3.3. Removing the limitation caused by the radiation
caustic
63
4-4. Conclusion 65
Chapter 5 Completely Adiabatic S-Shaped Bent Tapers 67
5-1. Introduction 67
5-2. Theory 68
5-3. Results and discussion 71
5-4. Conclusion 73
Chapter 6 Apexes-Linked Circle Gratings for Low-Loss
Waveguide Bends
74
6-1. Introduction 74
6-2. Design rule 76
6-3. Numerical results and discussion 78
6-4. Conclusion 81
Chapter 7 Wide-Angle Low-Loss Y Branches 82
7-1. Introduction 82
7-2. Design and simulation procedure 83
7-3. Summary 89
Chapter 8 Conclusions and Future Work 90
References 94
Publication List 102
參考文獻 94
References
[1] S. E. Miller,“Integrated optics: an introduction,”Bell System Technol. J.,
vol. 48, pp. 2059-2068, July 1969.
[2] T. H. Wood,“Multiple quantum well (MQW) waveguide modulators,”J.
Lightwave Technol., vol. 6, pp. 743-757, Jun. 1988.
[3] U. Koren, B. I. Miller, T. L. Koch, G. D. Boyd, R. J. Capik, and C. E.
Soccolich,“Low loss InGaAs/InP multiple quantum well waveguides,”
Appl. Phys. Lett., vol. 49, pp. 1602-1604, Dec. 1986.
[4] J. S. Weiner, D. A. B. Miller, D. S. Chemla, T. C. Damen, C. A. Burrus, T. H.
Wood, A. C. Gossard, and W. Wiegmann,“Strong polarization-sensitive
electroabsorption in GaAs/AlGaAs quantum well waveguides,”Appl. Phys.
Lett., vol. 47, pp. 1148-1150, Dec. 1985.
[5] H. F. Taylor,“Application of guided-wave optics in signal processing and
sensing,”Proc. IEEE, vol. 75, pp. 1524-1535, Nov. 1987.
[6] L. Thylen,“Integrated optics in LiNbO3: recent developments in devices for
telecommunications,”J. Lightwave Technol., vol. 6, pp. 847-861, Jun. 1988.
[7] B. L. Heffner, D. A. Smith, J. E. Baran, A. Yi-Yan, K. W. Cheung,
“Integrated-optic acoustically tunable infra-red optical filter,”Electron.
Lett., vol. 24, pp. 1562-1563, Dec. 1988.
[8] H. Kogelnik and V. Ramaswamy,“Scaling rules for thin-film optical
waveguides,”Appl. Opt., vol. 13, pp. 1857-1862, Aug. 1974.
[9] R. J. Black and C. Pask, “ Developments in the theory of
equivalent-step-index fibers,”J. Opt. Soc. Am. A., vol. 1, pp. 1129-1131,
Nov. 1984.
[10] R. A. Smmut,“Momentary look at noncircular monomode fibers,”Electron.
95
Lett., vol. 18, pp. 221-222, Mar. 1982.
[11] K. S. Chiang,“Analysis of fused couplers by the effective-index method,”
Electron. Lett., vol. 22, pp. 1221-1222, Nov. 1986.
[12] M. Munowitz and D. J. Vezzetti,“Numerical procedures for constructing
equivalent slab waveguides. An alternative approach to effective-index
theory,”J. Lightwave Technol., vol. 9, pp. 1068-1073, Sept. 1991.
[13] M. J. Robertson, P. C. Kendall, S. Ritchie, P. W. A. Mcilroy, and M. J.
Adams,“The weighted index method: a new technique for analyzing planar
optical waveguides,”J. Lightwave Technol., vol. 7, pp. 2105-2110, Dec.
1989.
[14] M. Heiblum and J. H. Harris,“Analysis of curved optical waveguides by
conformal transformation,”IEEE J. Quantum Electron., vol. 11, pp. 75-83,
Feb. 1975.
[15] H. Yanagawa, T. Shimizu, S. Nakamura, and I. Ohyama,
“Index-and-dimensional taper and its application to photonic devices,”J.
Lightwave Technol., vol. 10, pp. 587-591, May 1992.
[16] K. Kasaya, O. Mitomi, M. Naganuma, Y. Kondo, and Y. Noguchi,“A
simple laterally tapered waveguide for low-loss coupling to single-mode
fibers,”IEEE Photon. Technol. Lett., vol. 5, pp. 345-347, Mar. 1993.
[17] O. Mitomi, K. Kasaya, and H. Miyazawa,“Design of a single-mode tapered
waveguide for low-loss chip-to-fiber coupling,”IEEE J. Quantum Electron.,
vol. 30, pp. 1787-1793, Aug. 1994.
[18] M. D. Feit and J. A. Fleck, Jr.,“Computation of mode properties in optical
fiber waveguides by a propagating beam method,”Appl. Opt., vol. 19, pp.
1154-1164, Apr. 1980.
[19] G. R. Hadley,“Wide-angle beam propagation using Pade approximant
operators,”Opt. Lett., vol. 17, pp. 1426-1428, Oct. 1992.
96
[20] R. P. Ratowsky and J. A. Fleck, Jr.,“Accurate numerical solution of the
Helmholtz equation by iterative Lanczos reduction,”Opt. Lett., vol. 16, pp.
787-789, Jun. 1991.
[21] C. H. Henry and Y. Shani,“Analysis of mode propagation in optical
waveguide devices by Fourier expression,”IEEE J. Quantum Electron., vol.
27, pp. 523-530, Mar. 1991.
[22] J. Gerdes and R. Pregla,“Beam-propagation algorithm based on the method
of lines,”J. Opt. Soc. Am. B, vol. 8, pp. 389-394, Feb. 1991.
[23] C. T. Lee, M. L. Wu, L. G. Sheu, P. L. Fan, and J. M. Hsu,“Design and
analysis of completely adiabatic tapered waveguides by conformal
mapping,”J. Lightwave Technol., vol. 15, pp. 403-410, Feb. 1997.
[24] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products,
New York: Academic Press. 1994, p. 77.
[25] D. Marcuse,“Radiation losses of step-tapered channel waveguides,”Appl.
Opt., vol. 19, pp. 3676-3681, Nov. 1980.
[26] R. N. Thurston, E. Kapon, and A. Shahar,“Two-dimensional control of
mode size in optical channel waveguides by lateral channel tapering,”Opt.
Lett., vol. 16, pp. 306-308, Mar. 1991.
[27] D. J. Vezzetti and M. Munowitz, “ Design of strip-loaded optical
waveguides for low-loss coupling to optical fibers,”J. Lightwave Technol.,
vol. 10, pp. 581-586, May 1992.
[28] E. A. J. Marcatili,“Dielectric tapers with curved axes and no loss,”IEEE J.
Quantum Electron., vol. 21, pp. 307-314, Apr. 1985.
[29] J. I. Sakai and E. A. J. Marcatili, “ Lossless dielectric tapers with
three-dimensional geometry,”J. Lightwave Technol., vol. 9, pp. 386-393,
Mar. 1991.
[30] R. Weder,“Dielectric three-dimensional electromagnetic tapers with no
97
loss,”IEEE J. Quantum Electron., vol. 24, pp. 775-779, May 1988.
[31] B. Chen, G. L. Tangonan, and A. Lee,“Horn structures for integrated
optics,”Opt. Commun., vol. 20, pp. 250-252, Feb. 1977.
[32] W. K. Burns, A. F. Milton, and A. B. Lee,“Optical waveguide parabolic
coupling horns,”Appl. Phys. Lett., vol. 30, pp. 28-30, Jan. 1977.
[33] P. G. Suchoski, Jr., and R. V. Ramaswamy,“Constant-width variable-index
transition for efficient Ti-LiNbO3 waveguide-fiber coupling,”J. Lightwave
Technol., vol. 5, pp. 1246-1251, Sep. 1987.
[34] A. A. Lipovskii, “ A taper coupler for integrated optics formed by
ion-exchange under a non-uniform electric field,”Opt. Commun., vol. 61,
pp. 11-15, Jan. 1987.
[35] N. Yamaguchi, Y. Kokubun, and K. Sato,“Low-loss spot-size transformer
by dual tapered waveguides (DTW-SST),”J. Lightwave Technol., vol. 8, pp.
587-593, Apr. 1990.
[36] S. J. Chung and C. H. Chen,“A partial variational approach for arbitrary
discontinuities in planar dielectric waveguides,”IEEE Trans. Microwave
Theory Tech., vol. 37, pp. 208-214, Jan. 1989.
[37] A. Weisshaar and V. K. Tripathi,“Modal analysis of step discontinuities in
graded-index dielectric slab waveguides,”J. Lightwave Technol., vol. 10,
pp. 593-602, May 1992.
[38] R. Baets and P. E. Lagasse,“Calculation of radiation loss in integrated-optic
tapers and Y-junctions,”Appl. Opt., vol. 21, pp. 1972-1978, Jun. 1982.
[39] J. Yamauchi, Y. Akimoto, and M. Nibe, and H. Nakano,“Wide-angle
propagating beam analysis for circularly symmetric waveguides: comparison
between FD-BPM and FD-TDM,”IEEE Photon. Technol. Lett., vol. 8, pp.
236-238, Feb. 1996.
98
[40] E. G. Neumann and W. Richter,“Sharp bends with low losses in dielectric
optical waveguides,”Applied Optics, vol. 22, pp. 1016-1022, Apr. 1983.
[41] S. K. Korotky, E. A. J. Marcatili, and R. H. Bosworth,“Greatly reduced
losses for small-radius bends in Ti-LiNbO3 waveguides,”Appl. Phys. Lett.,
vol. 48, pp. 92-94, Jan. 1986.
[42] M. Majd, B. Schuppert, and K. Petermann,“90° S-bends in Ti-LiNbO3
waveguides with low losses,”IEEE Photon. Technol. Lett., vol. 5, pp.
806-808, Jul. 1993.
[43] I. Mansour and C. G. Someda,“Numerical optimization procedure for
low-loss sharp bends in MgO co-doped Ti-LiNbO3 waveguides,”IEEE
Photon. Technol. Lett., vol. 7, pp. 81-83, Jan. 1995.
[44] F. Ladouceur and P. Labeye,“A new general approach to optical waveguide
path design,”J. Lightwave Technol., vol. 13, pp. 481-492, Mar. 1995.
[45] T. Kitoh, N. Takato, M. Yasu, and M. Kawachi,“Bending loss reduction in
silica-based waveguides by using lateral offsets,”J. Lightwave Technol., vol.
13, pp. 555-562, Apr. 1995.
[46] L. M. Johnson and F. J. Leonberger,“Low-loss LiNbO3 waveguide bends
with coherent coupling,”Optics Lett., vol. 8, pp. 111-113, Feb. 1983.
[47] T. Shiina, K. Shiraishi, and S. Kawakami,“Waveguide-bend configuration
with low-loss characteristics,”Optics Lett., vol. 11, pp. 736-738, Nov. 1986.
[48] K. Hirayama and M. Koshiba,“A new low-loss structure of abrupt bends in
dielectric waveguides,”J. Lightwave Technol., vol. 10, pp. 563-568, May
1992.
[49] H. B. Lin, J. Y. Su, P. K. Wei, and W. S. Wang,“Design and application of
very low-loss bends in optical waveguides,”IEEE J. Quantum Electron., vol.
30, pp. 2827-2835, Dec. 1994.
99
[50] P. Buchmann and H. Kaufmann,“GaAs single-mode rib waveguides with
reactive ion-etched totally reflecting corner mirrors,”J. Lightwave Technol.,
vol. 3, pp. 785-788, Aug. 1985.
[51] T. Tamir, Guided-Wave Optoelectronics, Berlin: Springer-Verlag, 1989, p.
95.
[52] M. Yanagisawa, Y. Yamada, and M. Kobayashi, “ Low-loss and
large-tolerance fiber coupling of high-? silica waveguides by local
mode-field conversion,”IEEE Photon. Technol. Lett., vol. 4, pp. 433-435,
Apr. 1993.
[53] G. R. Hadley, “ Design of tapered waveguides for improved output
coupling,”IEEE Photon. Technol. Lett., vol. 5, pp. 1068-1070, Sept. 1993.
[54] R. Zengerle, O. Leminger, W. Weiershausen, K. Faltin, and B. H ubner,
“Laterally tapered InP-InGaAsP waveguides for low-loss chip-to-fiber butt
coupling: a comparison of different configurations,”IEEE Photon. Technol.
Lett., vol. 7, pp. 532-534, May 1995.
[55] J. M. Hsu and C. T. Lee, “Systematic design of novel wide-angle low-loss
Y-junction waveguides,” IEEE J. Quantum Electron., vol. 34, pp. 673-679,
Apr. 1998.
[56] C. T. Lee and J. M. Hsu, “Systematic design of microprism-type low-loss
step-index bent waveguides,” Appl. Opt., vol. 37, pp. 3948-3953, Jun. 1998.
[57] C. T. Lee and J. M. Hsu, “Systematic design of full phase compensation
microprism-type low-loss bent waveguides,” Appl. Opt., vol. 37, pp.
507-509, Jan. 1998.
[58] C. T. Lee, M. L. Wu, and J. M. Hsu, “Beam propagation analysis for tapered
waveguides: taking account of curved phase-front effect in paraxial
approximation,” J. Lightwave Technol., vol. 15, pp. 2183-2189, Nov. 1997.
[59] M. Hoffmann, P. Kopka, and E. Voges, “Low-loss fiber-matched
low-temperature PECVD waveguides with small-core dimensions for optical
100
communication systems,” IEEE Photon. Technol. Lett., vol. 9, pp.
1238-1240, Sept. 1997.
[60] R. M. Ridder, K. Worhoff, A. Driessen, P. V. Lambeck, and H. Albers,
“Silicon oxynitride planar waveguiding structures for application in optical
communication,” IEEE J. Select. Topics Quantum Electron., vol. 4, pp.
930-937, Nov./Dec. 1998.
[61] H. Sasaki and N. Mikoshiba,“Normalized power transmission in single
mode optical branching waveguides,”Electron. Lett., vol. 17, pp. 136-138,
Feb. 1981.
[62] O. Hanaizumi, M. Miyagi, and S. Kawakami, “ Low radiation loss
Y-junctions in planar dielectric optical waveguides,”Opt. Commun., vol. 51,
pp. 236-238, Sept. 1984.
[63] W. Y. Hung, H. P. Chan, and P. S. Chung,“Novel design of wide-angle
single-mode symmetric Y-junction,”Electron. Lett., vol. 24, pp. 1184-1185,
Sept. 1988.
[64] H. Hatami-Hanza, P. L. Chu, and M. J. Lederer,“ A new low-loss
wide-angle Y-branch configuration for optical dielectric slab waveguides,”
IEEE Photon. Technol. Lett., vol. 6, pp. 528-530, Apr. 1994.
[65] M. Rangaraj, M. Minakata, and S. Kawakami,“Low loss integrated optical
Y-branch,”J. Lightwave Technol., vol. 7, pp. 753-758, May 1989.
[66] S. Safari-Naeini, Y. L. Chow, S. K. Chaudhuri, and A. Goss,“Wide-angle
phase-corrected Y-junction of dielectric waveguides for low-loss
applications,”J. Lightwave Technol., vol. 11, pp. 567-576, Apr. 1993.
[67] H. Hantami-Hanza, M. J. Lederer, P. L. Chu, and I. M. Shinner,“A novel
wide-angle low-loss dielectric slab waveguide Y-branch,”J. Lightwave
Technol., vol. 12, pp. 208-213, Feb. 1994.
[68] F. S. Chu and P. L. Liu,“Low-loss coherent-coupling Y branches,”Opt.
101
Lett., vol. 16, pp. 309-311, Mar. 1991.
[69] H. B. Lin, R. S. Cheng, and W. S. Wang,“Wide-angle low-loss single-mode
symmetric Y-junctions,”IEEE Photon. Technol. Lett., vol. 6, pp. 825-827,
Jul. 1994.
[70] M. L. Wu, P. L. Fan, J. M. Hsu, and C. T. Lee,“Design of ideal structures
for lossless bends in optical waveguides by conformal mapping, ” J.
Lightwave Technol., vol. 14, pp. 2604-2614, Nov. 1996.
[71] P. L. Fan, M. L. Wu, and C. T. Lee,“Analysis of abrupt bent waveguides by
the beam propagation method and the conformal mapping method,”J.
Lightwave Technol., vol. 15, pp. 1026-1031, June. 1997.
指導教授 李清庭(Ching-Ting Lee) 審核日期 2001-6-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明