博碩士論文 84344007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:54.210.158.163
姓名 賴秋庚( Chiu-Keng Lai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 同步磁阻馬達之性能分析及運動控制研究
(Performance Analysis and Motion Control of Synchronous Reluctance Motor)
相關論文
★ 感光式觸控面板設計★ 單級式直流無刷馬達系統之研製
★ 單級高功因LLC諧振電源轉換器之研製★ 多頻相位編碼於穩態視覺誘發電位之大腦人機介面系統設計
★ 類神經網路於切換式磁阻馬達轉矩漣波控制之應用★ 感應馬達無速度感測之直接轉矩向量控制
★ 具自我調適導通角度功能之切換式磁阻馬達驅動系統---DSP實現★ 感應馬達之低轉速直接轉矩控制策略
★ 加強型數位濾波器設計於主動式噪音控制之應用★ 非匹配不確定可變結構系統之分析與設計
★ 無刷直流馬達直接轉矩控制方法之轉矩漣波改善★ 無轉軸偵測元件之無刷直流馬達驅動器研製
★ 無轉軸偵測元件之開關磁阻馬達驅動系統研製★ 感應馬達之新型直接轉矩控制研究
★ 改良比例積分與模糊控制器於線性壓電陶瓷馬達位置控制★ 感應馬達之直接轉矩控制之低轉速驅動補償策略
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 對於同步磁阻馬達,常用的轉矩控制模式有四種,這些方法的分析主要是針對無轉子繞組所做。在控制上,當暫態發生時,定子旋轉磁場與轉子事實上是不同步的。本文首先利用轉矩靈敏度,分析具有轉子繞組的同步磁阻馬達的轉矩暫態響應。並利用常用的兩個轉矩控制方法,最大轉矩控制(MTC)與固定d軸電流控制(CCIAC)來探討分析的正確性。
接著,吾人將可變結構系統(Variable Structure System, VSS)結合狀態回授控制,設計一個新型狀態回授控制器,稱之為“全不變性可變結構控制器(totally invariant variable structure controller)”。一般的可變結構控制系統存在著到達相(reaching phase)與滑動相(sliding phase),而當系統狀態在到達相時,其性能並非全然的可以加以掌握。而本文所提出的全不變性可變結構控制器僅存在著滑動相,也即系統在控制的起始就在滑動相上。因此,系統的性能是可以全然掌握的。這一個控制器同時擁有:1)如狀態回授控制般容易設計的優點;2)具有如可變結構系統般的強健性(robustness)功能。吾人將這一個控制器用在同步磁阻馬達的位置控制上,探討驗證其實際性能;並且將之應用在最佳控制的設計上,以與傳統LQ法做個比較,以彰顯其強健性。
緊接著,吾人利用滑動模式控制(sliding mode control)的概念,設計一個增量型馬達運動控制器(incremental motion controller)。這一個控制器根據一個預先所定義的馬達運動梯形軌跡(trapezoidal profile),利用四個切換面(switching surface)做控制,分別可以得到所需的加速度、定速度、減速度與定位控制性能。這一個控制器系統也具有可變結構控制強健性的優點,而且也免除了到達相,直接就進入滑動相。這一個運動控制器也利用同步磁阻馬達來做分析與驗證。
最後,本文所有的分析模擬皆在Simnon軟體底下完成,而所有的實作驗證,皆以PC系統為架構,以x86組合語言程式搭配x87數學運算處理器指令來實現控制法則。
摘要(英) Four torque control methods, based on different objects such as maximizing the torque/ampere ratio and the power factor, are generally used for a cageless SynRM. However, the torque production of a SynRM with cage rotor is not the same as that of a cageless SynRM. The difference between them is the transient torque, which exists in the cage rotor when it is not synchronous with the stator flux. This dissertation firstly analyzes the transient torque through the sensitivity function.
Secondly, a new totally invariant state feedback controller is proposed to enhance the robustness of SynRM drive systems by combining the classical state feedback controller and the variable structure control (VSC). The combination of these two different control methods has both their merits: a) the easy design of the state feedback and b) the strong robustness of the VSC. In other words, the system performance can be directly designed for the nominal system by using the well-known classical state feedback, such as the pole placement or the linear quadratic method. Then, VSC is used to ensure the control effect. To demonstrate the effectiveness of totally invariant state feedback controller, it is applied to the position control of a SynRM. Also, totally invariant state feedback is applied to optimal control problem to guarantee the performance designed by LQ method.
Moreover, this dissertation proposes multi-segment sliding mode control to solve a particular incremental motion control problem specified by a trapezoidal velocity profile. Each segment of the multi-segment switching surfaces is designed to match the corresponding part of the trapezoidal velocity profile, so that the motor dynamics on the specified-segment switching surface have the desired velocity or acceleration corresponding to the trapezoidal profile. The synchronous reluctance motor system is used to demonstrate the effectiveness of the multi-segment sliding mode control.
Finally, a PC-based experimental SynRM system is built to demonstrate all the proposed
algorithms.
關鍵字(中) ★ 同步磁阻馬達
★ 運動控制
★ 可變結構系統
★ 靈敏度
關鍵字(英) ★ Synchronous Reluctance Motor
★ Motion Control
★ Variable Structure System
★ Sensitivity
論文目次 封面
LIST OF CONTENTS
ABSTRACT
LIST OF FIGURES
CHAPTER 1 INTRODUCTION
1.1 Motivation
1.2 Survey of Previous Work
1.3 Main task and Organization
CHAPTER 2 SYNCHRONOUS RELUCTANCE MOTOR MODELING AND DRIVE SYSTEM
2.1 Introduction
2.2 Synchronous Reluctance Motor Modeling and Torque Control
2.3 The Construction of Experimental Motor Drive
2.4 Space Vector Pulse Width Modulation (SVPWM) Inverter
2.5 Hysteresis Current Control Inverter
2.6 Interface peripheral
2.6.1  A/D converter
2.6.2  D/A converter
2.6.3  Encoder counter
2.6.4  Timer/Counter
2.7 Control Algorithm Implementation
CHAPTER 3 TORQUE SENSITIVITY ANALYSIS FOR SYNCHRONOUS RELUCTANCE MOTOR WITH CAGE
3.1 Introduction
3.2 The Transient Torque Analysis by Sensitivity Function Approach
3.3 Simulation Results
3.4 Experimental Setup and Results
3.5 Summary
CHAPTER 4 TOTALLY INVARIANT POSITION CONTROL
4.1 Introduction
4.2 Totally Invariant Variable Structure Control
4.2.1 Totally Invariant Position Control
4.2.2 Simulation Results
4.2.3 Experimental Results
4.3 Optimal Position Control by Linear Quadratic Method and VSC
4.3.1 Design by Linear Quadratic and Modified Linear Quadratic Method
4.3.2 Design by Totally Invariant VSC method
4.3.3 Simulation Results
4.3.4 Experimental Results
4.4 Summary
CHAPTER 5 INCREMENTAL MOTION CONTROL VIA MULTI- SEGMENT SLIDING MODE CONTROL METHOD
5.1 Introduction
5.2 Incremental Motion Control of SynRM
5.2.1 Analysis of Velocity Control Mode
5.2.2 Analysis of Position Control Mode
5.2.3 Design of Velocity Control Mode
5.2.4 Design of Position Control Mode
5.3 Simulation and Experimental Results
5.3.1 Simulation Results
5.3.2 Experimental Results
5.4 Summary
CHAPTER 6 CONCLUSIONS
6.1 Conclusions
6.2 Future work
APPENDIX
REFERENCES
AUTHOR INFORMATION
PUBLICATION LIST
參考文獻 [1]B. D. O. Anderson and J. B. Moore, Linear Optimal Control , Englewood Cliff, N.J., Prentice-Hall, 1971.
[2]F. F. Bernal, A. G. Cerrada and R. Faure, 'Efficient Control of Reluctance Synchronous Machines,' IEEE/IECON '98, vol. 2, pp. 923-928, 1998.
[3]R. E. Betz, 'Theoretical Aspects of Control of Synchronous Reluctance machines,' IEE Proceedings, Part B, vol. 139, no.4, pp. 355-364, 1992.
[4]R. E. Betz, R. Lagerquist, M. Jovanovic, T. J. E. Miller and R. H. Middleton, 'Control of Synchronous Reluctance Machines,' IEEE Trans. Ind. Appl., vol. 29, no. 6, pp. 1110-1122, 1993.
[5]I. Boldea, Reluctance Synchronous Machines and Drives, Clarendon press, Oxford, 1996.
[6]B. K. Bose, Power Electronics and AC Drives, Englewood Cliff, N.J., Prentice-Hall, 1986.
[7]C. Bruguier, G. Champenois and J. P. Rognon, 'ID\_Model Control of a Synchronous Motor Without Position and Speed Sensor,' IEEE/APEC '95, vol. 1, pp. 387-391, 1995.
[8]K. T. Chang, T. S. Low and T. H. Lee, 'An Optimal Speed Controller for Permanent-Magnet Synchronous Motor Drives,' IEEE Trans. Ind. Electron., vol. 41, no. 5, pp. 503-510, 1994.
[9]T. L. Chern and Y. C. Wu, 'An Optimal Variable Structure Control with Integral Compensation for Electrohydraulic Position Servo Control Systems,' IEEE Trans. Ind. Electron. , Vol. 39, no. 5, pp. 460-463, 1992.
[10]S. K. Chung, H. S. Kim, C. G. Kim and M. J. Youn, 'A New Instantaneous Torque Control of PM Synchronous Motor for High Performance Direct Drive Applications,' IEEE Trans. Power Electron., vol. 13, no. 3, pp. 388-400, 1997.
[11]A. Consoli, 'Trends in Electrical Motors Drive Control,' IEEE Electrotechnical Conference, vol. 1, pp.I-25symbol{126}I-32, 1994.
[12]A. Consoli, F. Russo, G. Scarcella and A. Testa, 'Low and Zero Speed Sensorless Control of Synchronous Reluctance Motors,' IEEE Trans. Ind. Appl., vol. 35, pp. 1050-1057, 1999.
[13]J. C. R. Costa, M. Fadel and B. D. Fornel, 'Digital Position Control of Synchronous Motors using an Optimal State Feedback Structure,' IEEE Electrotechnical Conference, vol. 2, pp. 798-802, 1991.
[14]A. Davari and Z. Zhang, 'Three-Segment Variable Structure Systems,' International Journal of Robust and Nonlinear Control, vol. 6, pp. 249-255, 1996.
[15]R. W. Fei, 'Analysis of Starting Performance and Frequency Characteristics of Synchronous Reluctance Motors,' IEEE/IAS '96, vol. 2, pp. 761-768, 1996.
[16]J. E. Fletcher, B.W. Williams and T. C. Green, 'Efficiency Aspects of Vector Control Applied to Synchronous Reluctance Motors,' IEEE/IAS '95, vol. 1, pp. 294-300, 1995.
[17]J. E. Fletcher, B.W. Williams and T. C. Green, 'Loss Reduction in a Synchronous Reluctance Drive System using DSP Control,' IEEE/PESC '95, vol. 1, pp. 402-407, 1995.
[18]M. Ghribi and H. Le-Huy, 'Optimal Control and Variable Structure Combination Using a Permanent-Magnet synchronous Motor,' IEEE Industry Applications Society Annual Meeting, vol.1, pp. 408-415, 1994.
[19]H. Hashimoto, H. Yamamoto, S. Yanagisawa and F. Harashima, 'Brushless Servo Motor Control Using Variable Structure Control Approach,' IEEE Trans. Ind. Appl., vol. 24, no. 1, pp. 160-170, 1997.
[20]L. P. Huelsman, Active and Passive Analog Filter Design, New York, McGraw-Hill, 1993.
[21]U. Itkis, Control Systems of Variable Structure, New York, Wiley, 1976.
[22]M. Jovanovic, R. E. Betz and D. Platt, 'Position and Speed Estimation of Sensorless Synchronous Reluctance Motors,' IEEE Conference on Power Electronics and Drive Systems, vol. 2, pp. 844-848, 1995.
[23]S. J. Kang, S. K. Sul, 'Highly Dynamic Torque Control of Synchronous Reluctance Motor,' IEEE Trans. Power Electron., vol. 13, no. 4, pp. 793-798, 1998.
[24]P. Korondi, H. Hashimoto, T. Gajdar and Z. Suto, 'Optimal Sliding Mode Design for Motion Control,' IEEE/ISIE '96, vol. 1, pp. 277-282, 1996.
[25]P. Korondi, D. Young and H. Hashimoto, 'Sliding Mode Based Disturbance Compensation for Motion Control,' IEEE/IECON '97, vol. 1, pp. 73-78, 1997.
[26]L. Kreindler, A. Testa and T. A. Lipo, 'Position Sensorless Synchronous Reluctance Motor Drive using the Stator Phase Voltage Third Harmonic,' IEEE Industry Applications Society Annual Meeting, vol. 1, pp. 679-686, 1993.
[27]R. Lagerquist, I. Boldea and T. J. E. Miller, 'Sensorless Control of the synchronous Reluctance Motor,' IEEE Trans. Ind. Appl., vol. 30, no. 3, pp. 673-681, 1994.
[28]H. D. Lee, S. J. Kang and S. K. Sul, 'Efficiency-Optimized Direct Torque Control of Synchronous Reluctance Motor Using Feedback Linearization,' IEEE Trans. Ind. Electron., vol. 46, no. 1, pp. 192-198, 1999.
[29]K. W. Lim, T. S. Low, M. F. Rahman and L. B. Wee, 'A Discrete Time Variable Structure Controller for a Brushless DC Motor Drive,' IEEE Trans. Ind. Electron., vol. 38, no. 2, pp. 102-107, 1991.
[30]F. J. Lin, 'Real-Time IP Position Controller Design with Torque Feedforward control for PM Synchronous Motor,' IEEE Trans. Ind. Electron., vol. 44, no. 3, pp. 398-407, 1997.
[31]F. J. Lin and S. L. Chiu, 'Robust PM synchronous motor servo drive with variable-structure model-output-following control,' IEE Proc. Electr. Power Appl., vol. 144, no. 5, pp. 317-324, 1997.
[32]F. J. Lin, R. F. Fung and Y. C. Wang, 'Sliding mode and fuzzy control of toggle mechanism using PM synchronous servomotor drive,' IEE Proc.-Control Theory Appl., vol. 144, no. 5, pp. 393-402, 1997.
[33]F. J. Lin and Y. S. Lin, 'A Robust PM Synchronous Motor Drive with Adaptive Uncertainty Observer,' IEEE Trans. Energy Conversion, vol. 14, no. 4, pp. 989-995, 1999.
[34]M. T. Lin, Vector Control for a Synchronous Reluctance Motor Drive System, a dissertation of master's degree, NTIT, Taiwan.
[35]T. H. Liu and M. T. Lin, 'A Fuzzy Sliding-Mode Controller Design for a Synchronous Reluctance Motor Drive,' IEEE Trans. Aerospace and Electronic Systems, vol. 32, no. 3, pp. 1065-1075, 1996.
[36]T. H. Liu and M. T. Lin, 'DSP-Based Sliding Mode Control for a Sensorless Synchronous Reluctance Motor Drive,' IEEE/IECON '94, vol. 1, pp. 182-187, 1994.
[37]T. Matsuo, A. E. Antably and T. A. Lipo, 'A New Control Strategy for Optimum-Efficiency Operation of a Synchronous Reluctance Motor,' IEEE Trans. Ind. Appl., vol. 33, no. 5, pp. 1146-1153, 1997.
[38]T. Matsuo and T. A. Lipo, 'Current Sensorless Field Oriented Control of Synchronous Reluctance Motor,' IEEE Industry Applications Society Annual Meeting, vol. 1, pp. 672-678, 1993.
[39]D. Miljavec and P. Jereb, 'Can be Synchronous Reluctance Motor Compared with Induction Motor,' IEEE/MELECON '96, vol. 1, pp. 317-320, 1996.
[40]T. J. Miller, A. Hutton, C. Cossar and D. A. Staton, 'Design of a Synchronous Reluctance Motor Drive,' IEEE Trans. Ind. Appl. vol. 27, no. 4, pp 741-749, 1991.
[41]D. W. Novotny and T. A. Lipo, Vector Control and Dynamics of AC Drives, Clarendon press, Oxford, 1996.
[42]M. H. Park, K.S. Kim, 'Chattering Reduction in the Position Control of Induction Motor Using the Sliding Mode,' IEEE Trans. Power Electron., vol. 6, no. 3, pp. 317-325, 1991.
[43]M. Schrodel and P. Weinmeier, 'Sensorless Control of Reluctance Machines at Arbitrary Operating Conditions Including Standstill,' IEEE Trans. Power Electron., vol. 9, no. 2, pp. 225-231, 1994.
[44]H. J. Shieh, Variable Structure Controlled Induction Motor Servo Drive with Robust Field Orientation, a doctoral dissertation, NCU, Taiwan.
[45]K. K. Shyu and J. C. Hung, 'Totally Invariant Variable Structure Control Systems,' IEEE/IECON '97, New Orleans, USA, pp. 1119-1123, 1997.
[46]K. K. Shyu and C. K. Lai, 'Incremental Motion Control of Synchronous Reluctance Motor via Multi-Segment Sliding Mode Control Method,' IEEE Trans. Control System Technology, (accepted), 2001.
[47]K. K. Shyu, C. K. Lai and Y. W. Tsai, 'Optimal position control of synchronous reluctance motor via totally invariant variable structure control,' IEE Proc. Control Theory and Applications, vol. 147, No. 1, pp. 28-36, 2000.
[48]K. K. Shyu and C. K. Lai and John Y. Hung, 'Totally Invariant State Feedback Controller for Position Control of Synchronous Reluctance Motor,' IEEE Trans. Ind. Electron}, to appear, 2001.
[49]K. K. Shyu and H. J. Shieh, 'A New Switching Surface Sliding-Mode Speed Control for Induction Motor Drive Systems,' IEEE Trans. Power Electron., vol.11, no.4, pp. 660-667, 1996.
[50]K. K. Shyu and H. J. Shieh, 'Variable Structure Current Control for Induction Motor Drives by Space Voltage Vector PWM,' IEEE Trans. Ind. Electron., vol. 42, no. 6, pp. 572-578, 1995.
[51]J. J. Slotine and W. Li, Applied Nonlinear Control, Englewood Cliff, Prentice Hall, 1991.
[52]D. A. Staton, W. L. Soong and T. J. Miller, 'Unified Theory of Torque Production in Switched Reluctance and Synchronous Reluctance Motors,' IEEE Trans. Ind. Appl., vol. 31, no. 2, pp. 329-337, 1995.
[53]K. Uezato, T. Senjyu and Y. Tomori, 'Modeling and Vector Control of Synchronous Reluctance Motors Including Stator Iron Loss,' IEEE Trans. Ind. Appl., vol.30, no. 4, pp. 971-976, 1994.
[54]L. Umanand and S. R. Bhat, 'Optimal and Robust Digital Current Controller Synthesis for Vector-Controlled Induction Motor Drive Systems,' IEE Proc.- Electr. Power Appl., vol. 143, no. 2, pp. 141-150, 1996.
[55]V. I. Utkin, 'Sliding Mode Control Design Principles and Applications to Electric Drives,' IEEE Trans. Ind. Electron., vol. 40, no. 1, pp. 23-36, 1993.
[56]A. Vagati, 'The Synchronous Reluctance Solution: A New Alternative in A.C. Drives,' IEEE/IECON Bologna, Italy, pp. 1-12, 1994.
[57]A. Vagati, G. Franceschini, I. Marongiu, G. P. Troglia, 'Design Criteria of High Performance Synchronous Reluctance Motors,' IEEE Industry Applications Society Annual Meeting, vol. 1, pp. 66-73, 1992.
[58]A. Vagati, M. Pastorelli, G. Franceschini, 'High-Performance Control of Synchronous Reluctance Motors,' IEEE Trans. Ind. Appl., vol. 33, no. 4, pp. 983-991, 1997.
[59]A. Vagati, M. Pastorelli, G. Franceschini and V. Drogoreanu, 'Flux-Observer-Based High-Performance Control of Synchronous Reluctance Motors by Including Cross Saturation,' IEEE Trans. Ind. Appl., vol. 35, no. 3, pp. 597-605, 1999.
[60]P. Y. P. Wung and H. B. Puttgen, 'Synchronous Reluctance Motor Operating Point Dependent Parameter Determination', IEEE Trans. Ind. Appl., vol. 28, no. 2, pp. 358-363, 1992.
[61]Y. Q. Xiang and S. A. Nasar, 'A Fully Digital Control Strategy for Synchronous Reluctance Motor Servo Drives,' IEEE Trans. Ind. Appl., vol. 33, no. 3, pp. 705-713, 1997.
[62]Y. Q. Xiang and S. A. Nasar, 'Estimation of Rotor Position and Speed of a Synchronous Reluctance Motor for Servodrives,' IEE Proc.-Electr. Power Appl., vol. 142, no. 3, pp. 201-205, 1995.
[63]L. Xu, F. Lian and T. A. Lipo, 'Transient Model of a Doubly Excited Reluctance Motor,' IEEE Trans. Energy Conversion, vol. 6, pp. 126-133, issue 1, 1991.
[64]L. Xu, X. Xu, T. A. Lipo, and D. W. Novotny, 'Vector Control of a Synchronous Reluctance Motor Including Saturation and Iron Loss,' IEEE Trans. Ind. Appl., vol. 27, no. 5, pp. 977-985, 1991.
[65]L. Xu and J. Yao, 'A Compensated Vector Control Scheme of a Synchronous reluctance Motor Including Saturation and Iron Losses,' IEEE Trans. Ind. Appl., vol. 28, no. 6, pp. 1330-1338, 1992.
[66]D. S. Yoo and M. J. Chung, 'A Variable Structure Control with Simple Adaptation Laws for Upper Bounds on the Norm of the Uncertainties,' IEEE Trans. AC, vol. 37, no. 6, pp. 860-865, 1992.
[67]B. Zhang and M. H. Pong, 'Maximum Torque Control and Vector Control of Permanent Magnet Synchronous Motor,' IEEE Power Electronics and Drive Systems Conference, vol. 2, pp. 548-552, 1997.
指導教授 徐國鎧(Kuo-Kai Shyu) 審核日期 2001-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明