博碩士論文 86321004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.206.48.142
姓名 蔡明策( Ming-Tseh Tsay)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 稻殼灰分和稻殼灰分- 氧化鋁擔載鎳觸媒特性與反應性之研究
(The study of characterization and reactivity of rice husk ash-supported and rice husk ash-alumina-supported nickel catalysts.)
相關論文
★ 以離子交換法製備矽-鋁二元氧化物擔體鎳觸媒之研究★ 矽粉對二氧化矽碳熱還原氮化反應影響之研究
★ 氧化鐵粉對二氧化矽碳熱還原氮化反應影響之研究★ 以稻殼灰分初濕含浸製備擔體銅觸媒之研究
★ 以稻殼灰分沈澱固著製備擔體銅觸媒之特性研究★ 鐵粉對稻殼灰分碳熱還原氮化反應之影響研究
★ 矽粉對稻殼灰分碳熱還原氮化反應之影響研究★ 以稻殼灰分沈澱固著製備擔體銅觸媒 之反應性研究
★ 以不同方法製備稻殼灰分-氧化鋁擔載鎳觸媒之研究★ 氧化鋯擔載奈米金觸媒之製備與應用研究
★ 氧化鋁擔載奈米金觸媒之製備與應用研究★ 稻殼灰分擔載銅觸媒之製備與應用研究
★ 氧化鈦擔載奈米金觸媒應用於甲醇部分氧化產製氫氣之研究★ 氧化鐵和氧化鐵-金屬氧化物擔載奈米金觸媒之製備與應用研究
★ 氧化鋁-金屬氧化物複合擔載奈米金觸媒應用於甲醇部分氧化產製氫氣之研究★ 擔載銅觸媒和金觸媒之製備與應用研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究分別以稻殼灰分(RHA)及稻殼灰分含浸硫酸鋁製成矽-鋁組合氧化物(RHA-Al2O3)做為觸媒擔體,並利用離子交換法製備擔載鎳觸媒。實驗中使用氮吸附法、感應偶合電漿原子發射光譜儀(ICP-AES)、掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、X-射線繞射儀(XRD)、熱重分析(TGA)、氫氣程溫脫附(H2-TPD)、正-丁胺程溫脫附(n-C4H9NH2- TPD)及程溫還原(TPR)對觸媒進行特性分析,並在一大氣壓下進行二氧化碳氫化反應以探討各項製備及操作變數(如:金屬載量、鍛燒溫度與時間、還原溫度與時間、RHA-Al2O3組合氧化物中的氧化鋁含量及反應溫度)對觸媒活性的影響。最後經由以上的實驗結果分析建立RHA與RHA-Al2O3擔載鎳觸媒的模型。
在稻殼灰分擔載鎳觸媒(Ni/RHA)方面,實驗結果發現:在溶液pH值為8.5時,有最大的鎳離子吸附量。離子交換乾燥後所形成的觸媒先驅物為矽酸鎳,而矽酸鎳熱分解溫度至少要773K,並且形成非常難還原的氧化鎳,經還原得到的鎳金屬晶粒呈現圓球形,而且分佈均勻、大小均一。鎳的分散度隨鎳載量的增加漸次下降,但鎳金屬表面積隨鎳載量的增加而增加,直至16.7wt.% 以後卻隨之下降,而金屬粒徑亦隨著載量的增加而增加。觸媒的活性隨反應的進行受到積碳的影響而衰退,直至反應3h呈現穩定,而鍛燒處理不會影響觸媒的活性,但觸媒的活性會隨著反應溫度的增加而提升,直至773K時再漸次下降。並且,經由TPD的分析證明,稻殼灰分具有的擔體性質相較於一般常用的氧化矽膠,可使負載於表面上的鎳金屬有較高的金屬表面積, 在二氧化碳的氫化反應上有更好的活性。
在矽-鋁組合氧化物擔載鎳觸媒(Ni/RHA-Al2O3)方面,實驗結果發現:RHA-Al2O3組合氧化物擔體的BET比表面積隨著氧化鋁含量的增加漸次下降,而酸度卻隨著氧化鋁含量的增加而增加。離子交換法製備的Ni/RHA-Al2O3觸媒,在乾燥後所形成的觸媒先驅物為鋁酸鎳,而鍛燒鋁酸鎳形成氧化鎳所須的溫度約在773K,還原後得到的鎳觸媒其金屬分散度隨載量的增加漸次降低,鎳金屬的粒徑與表面積卻隨載量的增加而增加,而且粒徑比Ni/RHA觸媒大。觸媒的活性大致上不隨反應的進行而衰退,但是催化活性隨著反應溫度增加至某一值,而後增加反應溫度並不會增加觸媒的催化活性。在773K下進行鍛燒4h可得活性較佳的觸媒,還原溫度會影響催化活性,但不受還原時間的影響。RHA-Al2O3組合氧化物中的鋁含量增加會降低觸媒的活性。並且,經由4.44wt.% Ni/RHA-Al2O3-4與4.29 wt.%Ni/RHA的催化活性比較,反應溫度高於773K時4.44wt.% Ni/RHA-Al2O3-4觸媒有較佳的甲烷選擇率。因此,本實驗所製備的矽-鋁組合氧化物乃是一種具高促進效果的觸媒擔體。
摘要(英) Both the rice husk ash (RHA) and the RHA-Al2O3 composite oxides prepared by impregnation of RHA in aluminum sulfate were used as a catalyst support, respectively. Nickel catalysts supported on RHA and RHA-Al2O3 were prepared by the ion exchange technique. The catalysts were characterized by nitrogen adsorption method, inductively coupled plasma-atomic emission spectrometer(ICP-AES), scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), thermogravimetric analyzer(TGA), temperature-programmed desorption (TPD) of hydrogen and n-butylamine and temperature-programmed reduction (TPR). The catalytic activities of catalysts were tested by CO2 hydrogenation under normal atmospheric pressure. During the investigations of preparation and operation conditions, effects of nickel loading, calcination, reduction, alumina content of RHA-Al2O3 composite oxides and reaction temperature on catalytic performance were also examined. From the experimental results described and discussed above, models were developed to visualize the nature of the RHA-supported and RHA-Al2O3-supported nickel catalysts.
For the RHA-supported nickel catalysts (Ni/RHA) system, the experimental results show that the pH value of 8.5 is the optimum for the preparation of nickel catalysts supported on RHA. That nickel silicate with a layer structure formed after drying step. The thermal decomposition of the layered nickel silicates starts above 773K and leads to the formation of NiO. Reduction of NiO from the thermal decomposition of the layered nickel silicates is found to be unusually difficult. After reduction, the nickel crystallites appear to be spherical in shape. They are homogeneously distributed over the support and exhibit a narrow size distribution. The dispersion of nickel gradually decreases with nickel loading. The nickel surface area increases with nickel loading up to 16.7 wt.% Ni and then decreases with further increase in nickel loading. Furthermore, the mean size of nickel crystallites increases with nickel loading. On the other hand, the results show that activity of catalyst decays as a function of reaction time until 3h due to coking. The activity of catalyst was found to be independent of calcination temperature and time. The catalytic activity was increased with an increasing reaction temperature up to 773K, but decreased with a further increase in the reaction temperature. Moreover, RHA supported nickel catalysts display both higher specific nickel surface area and activity than silica gel as revealed by the H2-TPD and the hydrogenation tests.
In the RHA-Al2O3 composite oxides supported nickel catalysts (Ni/RHA-Al2O3) aspect, the results show that the BET specific surface area of support decreases with the increase in alumina content, while the acidity of support increases with the increase in alumina content. The nickel aluminate formed after the drying step. The decomposition temperature of nickel aluminate to nickel oxide started above 773K. Furthermore, increasing the metal loading decreases the metal dispersion. The crystallite size of nickel supported on RHA-Al2O3 is larger than that of nickel supported on RHA. Generally, the catalytic activity increased with the reaction temperature increases up to certain value and then remain constant. The calcination temperature of 773K and calcination time of 4h were the optimum conditions for the preparation of catalysts. The activity of catalysts was strongly influenced by the reduction temperature rather than by reduction duration. Increasing the alumina content in RHA-Al2O3 composite oxides decreases the catalytic activity of the catalyst. In comparing the catalytic activity of 4.44wt.% Ni/RHA-Al2O3-4 with that of 4.29 wt.%Ni/RHA, it is found that the former exhibits a higher selectivity when the reaction temperature is higher than 773K.
關鍵字(中) ★ 鎳觸媒
★ 離子交換
★ 矽鋁氧化物擔體
★ 稻殼灰分
★ CO2氫化反應
關鍵字(英) ★ silica-alumina oxides
★ rice husk ash
論文目次 封面
中文摘要
英文摘要
圖索引
表索引
第一章緒論
1-1研究背景與動機
1-2研究內容與本論文的結構
第二章文獻回顧
2-1稻殼灰分的性質及製備程度
2-2擔體的性質
2-3離子交換法製備擔體鎳觸媒
2-4擔體效應
2-5-二氧化碳氫化生成甲烷反應
第三章理論分析
3-1熱力學的分析
3-2動力學的分析
3-3資料的計算
第四章實驗部分
4-1藥品及氣體
4-2儀器設備
4-3觸媒擔體的製備
4-4觸媒的製備
4-5擔體與觸媒的監定分析
4-6觸媒的活性測試-CO2氫化反應
4-7實驗流程與操作變數
第五章RHA擔載鎳觸媒的結果與討論
5-1稻殼的前處理
5-2Hi/RHA觸媒製備條件的探討
5-3Hi/RHA觸媒的特性分析
5-4Hi/RHA觸媒的活性探討
5-5Hi/RHA與Ni/SiO2-gel的活性比較
5-6Hi/RHA觸媒的模型
第六章RHA-Al2O3擔載鎳觸媒的結果與討論
6-1Hi/RHA-Al2O3觸媒的特性分析
6-2Hi/RHA-Al2O3觸媒活性的探討
6-3Hi/RHA與Ni/RHA-Al2O3的活性比較
6-4Hi/RHA-Al2O3的觸媒的模型
第七章結論
參考文獻
附錄 實驗資料
參考文獻 Acharya, H. N., H. D. Banerjee, and N. C. Roy, Indian Patent, No. 158, 579 (December, 1986).
Afzal, M., C. R. Theocharis, and S. Karim, “Temperature Programmed Reduction of Silica Supported Nickel Catalysts”, Colloid Polym Sci., 271(1993)1100.
Aguinaga. A., J. C. De La Cal, J. M. Asua, and M. Montes, “Effect of the Preparation on the Activity and Selectivtiy of Supported Nickel Catalysts”, Appl. Catal. A, 51(1989) 1.
Amick, J. A. ,“Purification of Rice Hulls As a Source of Solar Grade Silicon for Solar-Cells”, J. Electrochem. Soc. , 129(1982) 864.
Anderson, J. H., J. Catal., 26(1972)277.
Benenek, S. ,E. Fedorynska, and P. Winiarek, ”Investigation of the Acidity of Ni/Al2O3 and Ni/SiO2-Al2O3 Catalysts”, React. Kinet. Catal. Lett. , 51(1993) 89.
Boar, P. L. and L. K. Ingram , “The Comprehensive Analysis of Coal Ash and Silicate Rocks by Atomic-Absorption Spectrophotometry by a fusion Technique” , Analyst. , 95(1970) 124.
Bond, G. C., “ Catalysis by Metals”, Academic Press, London, 1962, p.40.
Bonneviot, L. , O. Clause , M. Che , and H. Dexpert , “EXAFS Characterization of the Adsorption Sites of Nickel Ammine and Ethylenediamine Complexes on a Silica Surface” , Catal. Today , 6(1989) 39.
Burch, R. and A. R. Flambard, “Support Effects in Nickel Catalysts” , J. Catal., 85(1984)16.
Burton, R. S. ,R. C. Richard, and S. Alpert, “Municipal Solid Waste Prolysis” , AIChE System , 70(1974) 116.
Burwell, R. , G. Pearson , G. Haller , and S. Chock , Inorganic Chemistry , 4(1965) 1123.
Carter, J. L. ,J. A. Cusumano, and J. H. Sinfelt, “Catalysis Over Supported Metal. V. The Effect of Crystallite Size on the Catalystic Activity of Nickel”, J. Phy. Chem. , 70(1966) 2257.
Chakraverty, A. ,P. Mishra, and H. D. Banerjee, “Investigation of Thermal Decomposition of Rice Husk”, Thermochimica Acta , 94(1985) 267.
Chakraverty, A. ,P. Mishra, and H. D. Banerjee, “Investigation of Production of Pure Amorphous White Silica”, J. Master. Sci. , 23(1988) 21.
Chang, F. W. ,Hsiao T. J. ,Chang S. W. ,Lo J. J. , “Nickel Supported on Rice Husk Ash-Activity and Selectivity in CO2 Methanation”, Appl. Catal. A. , 164(1997) 225.
Chang, F. W. ,T. J. Hsiao, and J. D. Shih, “Hydrogenation of CO2 over a Rice Husk Ash Supported Nickel Catalyst by Deposition-Precipitation”, Ind. Eng. Chem. Res. , 37(1998) 3838.
Chen, J. M. and F. W. Chang,"Rice Husk as a Source of High Purity Carbon/Silica to Producing Silicon Tetrachloride ",Proc. Natl. Sci. Counc.,15 (1991a) 412.
Chen, J.M. and F.W. Chang,"The Chlorination Kinetics of Rice Husk ",Ind. Eng. Chem. Res., 30 (1991b) 2214.
Clause, O. ,L. Bonneviot, and M. Che, “Effect of the Preparation Method on the Thermal Stability of Silica-Supported Nickel Oxide as Studied by EXAFS and TPR Techniques”, J. Catal. , 138(1992a)195.
Clause, O., M. Kermarec, L. Bonneviot, F. Villain, and M. Che, “Nickel(II) Ion-Support Interactions as a Function of Preparation Method of Silica-Supported Nickel Materials”, J. Am. Chem. Soc. , 114(1992b)4709.
Daniell, W., U. Schubert, R. Glockler, A. Meyer, K. Noweck, and H. Knozinger, “Enhanced Surface Acidity in Mixed Alumina-silica: a Low-temperature FTIR study”, Appl. Catal. A, 196(2000)247.
deBoer, J. H., B. C. Lippens, B. G. Linsen, J. C. P. Broekhoff, A. van den Heuvel, and T. J. Osiga, “The t-Curve of Multimolecular N2-Adsorption”, J. Colloid Interface Sci., 21(1966)405.
Fogler, H. S., “Elements of Chemical Reaction Engineering”, 2th, 1992.
Gil. A. ,A. Diaz. ,L. M. Gandia, and M. Montes, “Influence of the Preparation Method and the Nature of the Support on the Stability of Nickel Catalysts”, Appl. Catal. A, 109(1994) 167.
Gonzalez-Marcos, M. P., J. I. Gutierrez-Ortiz, C. Gonzalez-Ortiz de Elguea, J. A. Delgado, J. R. Gonzalez-Velasco, “Nickel on Silica Systems. Surface Features and their Relationship with Support, Preparation Procedure and Nickel Content”, Appl. Catal. A, 162 (1997)269.
Hindustan Lever Ltd. , Indian Patent , No.147090(1979).
Ho, S. C. and T. C. Chou, “The Role of Anion in the Preparation of Nickel Catalyst Detected by TPR and FTIR Spectra”, Ind. Eng. Chem. Res., 34(1995)2279.
Houalla, M. F. Delannay, I. Matsuura, and B. Delmon, “Physico-chemical Characterization of Impregnated and Ion-exchanged Silica-supported Nickel Oide”, J. C. S. Farady I, 76(1980)2128.
Houston, D. F. ,“Rice Hulls”, Rice Chemistry and technology , Chapter 12 , Houston, D. F. ,Eds. ,American of Association of Cereal Chemistry, St. Paul. Minnessota(1972).
Ibrahim, D. M. and S. A. EL-Hemaly, “Thermal Treatment of Rice-Husk Ash : Effect of Time Firing on Pore Structure and Crystallite Size”, Thermochimica Acta, 37(1980)347.
Jones, A., “Temperature-programmed Reduction for Solid Materials Characterization”, A Series of Reference Books and Textbooks, chap. 3, vol. 24(1986).
Kermarec, M., J. Y. Carriat, P. Burattin, and M. Che, “ FTIR Identification of the Supported Phases Produced in the Preparation of Silica-Supported Nickel Catalysts”, J. Phys. Chem., 98(1994)12008.
Klbag, S. S. ,P. K. Basu, and N. V. Bringi, Indian Patent,No.146570(1979).
Kohler, M.A., J. C. Lee, D. L. Trimm, N. W. Cant, and M. S. Wainwright, “ Preparation of Cu/SiO2 Catalysts by the Ion-exchange Technique”, Appl. Catal. A, 31(1987)309.
Kumbhar, P. S., “ Nickel Supported on Titania-silica: Preparation, Characterization and Activity for Liquid-phase Hydrogenation of Acetophenoen”, Appl. Catal. A, 96(1993)241.
Lanning, F. C., “Silicon in Rice” , Agricultural and Food Chemistry, 11(1963))435.
Lee, J. C., D. L. Trimm, M. A. Kohler, M. S. Wainwright, and N. W. Cant, “Investigation of Copper on Silica Catalysts Prepared by an Ion Exchange Method ” , Catal. Today, 2(1988)643.
Liou, T. H. and F. W. Chang, “The Nitridation Kinetics of Pyrolyzed Rice Husk”, Ind. Eng. Chem. Res. , 35 (1996) 3375.
Liou, T. H. ,F. W. Chang, and J. J. Lo, “Pyrolysis Kinetics of Acid-Leached Rice Husk” , Ind. Eng. Chem. Res. , 36(1997)568.
Liu, S. L. and C. H. Ho, “Nature of Silicon in Rice Hulls. I. Solubility of the Silicon Part” , J. Chin. Chem. Soc., 6(1960)141.
Liu, S. L., “The Nature of Silicon in Rice Hulls. II. Polymerising Tendency of the Dissolved Silanolates” , J. Chin. Chem. Soc., 8(1961)226.
Longgaback, J. R. and F. Banner, Industrial and Laboratory Pyrolyusis , Chap. 27(1976) 476.
Medema, J., J.J.G.M. Van Bokhoven, A.E.T.Kuiper, J. Catal., 25(1972)238.
Medsford. S. , J. Chem. Soc. , 123(1923) 1452.
Michael C. J. Bradford, M. Albert Vannice, ”Catalytic Reforming of Methane with Carbon Dioxide Over Nickel Catalysts. I. Catalyst Characterization and Activity”, App. Catal. A, 142(1996) 73.
Mile, B. D. Stirling, M. A. Zammitt, A. Lovell, and M. Webb, “The Location of Nickel Oxide and Nickel in Silica-Supported Catalysts:Two Forms of “NiO” and the assignment of Temperature Programmed Reduction Profiles”, J. Catal. , 114(1988) 217.
Mile, B., D. Stirling, M. A. Zammitt, A. Lovell, and M. Webb, “TPR Studies of the Effects of Preparation Conditions on Supported Nickel Catalysts”, J. Mol. Catal., 62(1990)179.
Mills, G. A. and F. W. Steffgen, “Mechaism of CO2 Methanation”, Catal. Rev. , 8(1974) 159.
Mustard, D. G. and C. H. Bartholomew, “Determination of Metal Crystallite Size and Morphology in Supported Nickel Catalysts”, J. Catal., 67(1981)186.
Patel, M. , A. Karera, and P. Prasanna, “Effect of Thermal and Chemical Treatment on Carbon and Silica Contents in Rice Husk”, J. Master. Sci. , 20(1987) 4387.
Pichler H. , Brennst.-Chem. , 24(1943) 39.
Puxley, D. C., I. J. Kitchener, C. Komodromos and N. D. Perkyns, Preparation of Catalysts, vol. 3, Elsevier, Amsterdam, 1983, p. 237.
Richardson, J. T. and R. J. Dubus, “Crystallite Size Distributions of Sintered Nickel Catalysts”, J. Catal. , 57(1979) 417.
Riverors, H. and C. Garz, “Rice Husks as a Source of High Purity Silica”, J.Master. Sci. , 22(1987)4665.
Russell, W. W. and G. H. Miller, J. Amer. Vhem. Soc. , 72(1950)2446.
Scheffer, B., P. Molhock, and J. A. Moulijn, “Temperature-Programmed Reduction of NiO-WO3/Al2O3 Hydrodesulfurization”, Appl. Catal. A, 46(1989)11.
Schlesinger, M. D. ,W. S. Sianner, and D. E. Wolfson, “Processing Agrricultural and Municipal Wastes”, AVI Press Chap. 9, 93(1972).
Schwarz, J. A., C. Contescu, and A. Contescu, “Methods for Preparation of Catalytic Materials”, Chem. Rev., 95(1995)477.
Schwarz, J. A., C. T. Ugbor, and R. Zhang, “The Adsorption/Impregnation of Pd(II) Cations on Alumina, Silica and Their Composite Oxides”, J. Catal., 138(1992)38.
Scokart., P. O. ,F. D. Declerck, R. E. Sempels, and P. G. Rouxhet, J. Chem. Soc., Faraday Trans.I , 73(1977) 359.
Sermon, P. A. and J. Sivalingam, ”Mechanisms of Preparation of Silica Supported”, Colloids and Surfaces , 63(1992) 59.
Stanislaus. A. ,M. Absi-Halab, and K. Al-Dolama, “Effect of Nickel on the Surface-Acidity of Gamma-Alumina and Alumina-Supported Nickel-Molybdenum Hydrotreating Catalysts”, Appl. Catal. A., 50(1989) 237.
Tanabe. K., “Solid Acids and Bases”, Kodansha, Tokyo, and Academic Press, New York (1970).
Tauster, S. J. ,S. C. Fung, and R. L. Garten, J. Amer. Chem. Soc. , 100(1978) 170.
Thomas, R. S., P. K. Basu, and F. T. Jones, “Silicon Tetrachloride Synthesis from Rice Hulls : Transmission and Scanning Electron Microscope Study”, Proc. Electron Microsc. Soc. Amer., 30(1972)236.
Tillman, D. A., “ Wood as an Energy Resource”, Academic : New York, p. 65(1987).
Venezia, A. M., A. Parmaliana, A. Mezzapica, and G. Deganello, “Pumice-Supported Nickel Catalysts : Structural and Reactivity Study in the hydrogenation of CO”, J. Catal., 172(1997)463.
Vannice, M. A., “The Catalytic Synthesis of Hydrocarbon from H2/CO Mixture over the Group VIII Metals; IV The Kinetic Behavior of CO Hydrogenation over Ni Catalysts”, J. Catal. , 44(1976) 152.
Vlasenko. V. M. and G. E. Yuzefovich, “Mechanism of the Catalytic Hydrogenation of Oxides of Carbon to Methane”, Russian Chem. Rev. , 38(1969) 9.
Weatherbee, G. D. and C. H. Bartholomew, “Hydrogenation of CO2 on Group VIII Metals : Specific Activity of Ni/SiO2”, J. Catal., 68(1981)67.
Yoshida, S. Y. Onishi, and K. Kitagishi, “The Chemical Nature of Silicon in Rice Plant”, Soil and Plent Food, 5(1959)23.
Yoshida, S. Y. Onishi, and K. Kitagishi, “Chemical Forms, Mobility and Depostion of Silicon in Rice Plant”, Soil Science and Plant Nutrition , 8(1962)15.
張天鴻,“廢物利用將稻殼轉化為高蛋白飼料”,食品工業(1978).
陳茂?,陳吉斌,“稻殼飼料化試驗-氨化”,畜產研究(1978).
孫金星,周齊生,“利用稻殼熱解後所產生之活性碳對原子爐洗滌廢水中清潔劑吸收之研究”,放射性待處理物料管理處,(1983).
林福星,“稻殼的熱裂解-氣化與水蒸汽重組反應之研究”,國立台灣大學碩士論文(1987).
黃錦河,張武男,林深林,“數種木士化介質之物理性與化學性分析”,興大園藝(1993).
王奕凱,邱宏明,李秉傑,合譯 “非均勻系催化原理與應用”,渤海堂文化公司 (1993)。
黃豐智, ”氧化矽載體無電鍍鎳觸媒之研究”, 私立逢甲大學化學工程研究所碩士論文(1994).
指導教授 張奉文(Feg-Wen Chang) 審核日期 2001-6-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明