博碩士論文 87222033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:89 、訪客IP:3.92.28.84
姓名 蔡淼聖( Miao-Sheng Tsai)  查詢紙本館藏   畢業系所 物理學系
論文名稱 矽離子佈植氮化鎵薄膜之電性研究
(Electrical Properties of Silicon Implanted GaN)
相關論文
★ 氫氣的調控對化學氣相沉積法成長石墨烯之影響★ 氮化銦鎵/氮化鎵多重量子井的激發光譜
★ 中子質化氮化鎵材料之特性研究★ 鐵磁/超導/鐵磁單電子電晶體的製作與電子自旋不平衡現象的量測
★ 砷化鎵金屬半導體場效電晶體中p型埋藏層之效應★ 熱處理對氮化銦鎵量子井雷射結構之影響與壓電效應之分析
★ 離子佈植摻雜氮化鎵薄膜的光、電、結構特性之分析★ 離子佈植技術應用於高亮度發光二極體之設計與製作
★ 繞射式元件之製程及特性分析★ 氮化銦鎵/氮化鎵量子井之光特性研究
★ 矽離子佈植在P型氮化鎵的材料分析與 元件特性之研究★ 氮化鎵高數值孔徑微透鏡之設計、製作與特性分析
★ 微凹平面鏡及矽光學桌之組裝設計★ 指叉型氮化鎵發光二極體之設計製作與量測
★ 氮化鎵光偵測器的暗電流與激子效應★ 氮化鋁保護層應用於離子佈植活化之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 經由離子佈植方式摻雜矽原子後,對其電性的改變。藉由高劑量的摻
雜,接著在氮氣、氧氣、空氣不同環境下活化,成功的使所有的P 型
氮化鎵薄膜活化成n 型(使得在原生P 型氮化鎵薄膜形成一層n 型氮
化鎵),而經由1000℃ 30 分鐘的高溫熱處理後,原生P 型和n 型氮
化鎵薄膜皆活化成n+型,載子濃度值約5.5×1019㎝-3(面載子濃度值
約3×1015 ㎝-2),活化率約27﹪。矽離子佈植的條件為40KeV/2E15
㎝- 2 , 100KeV/5E15 ㎝- 2 , 200KeV/5E15 ㎝- 2。藉由多次的矽離子佈
植,調整不同的能量與劑量,在氮化鎵薄膜內形成一均勻的摻雜區
域。降低離子佈植劑量為40KeV/8E14 ㎝ -2,100KeV/2E15 ㎝ -2,
200KeV/2E15 ㎝-2重複上述實驗,經由1100℃ 60 分鐘氮氣環境下活
化,發現n 型氮化鎵薄膜載子濃度值由8×1016 ㎝-3 變成4×1019 ㎝-3
(面載子濃度值約2.5×1015 ㎝-2),活化率提高至53﹪。
在歐姆電極方面,我們以電子束蒸鍍 鈦/鋁/鉑/金作為離子佈植
試片之n 型歐姆接觸。將矽離子佈植試片以1000℃ 30 分鐘活化後,
其特徵接觸電阻值(specific contact resistance nc)為5×10-4 Ω
-㎝ 2,經過600℃氮氣環境下熱處理後特徵接觸電阻值降低到1×10-6
Ω-㎝ 2。而相同的矽離子試片以1000℃ 15 分鐘及30 分鐘活化後鍍
上透明電極(ITO),其特徵接觸電阻值nc 分別為2×10-4 Ω-㎝ 2 及8
×10-5 Ω-㎝ 2。而極薄的金屬層 鎳/金(Ni/Au=40A/100A)作為P
型氮化鎵薄膜之歐姆接觸以改善藍光二極體的透光性。
利用氦-鎘雷射量測光激螢光譜,發現所有活化後的n 型氮化鎵薄
膜都不發光。我們推測應是高劑量(1.2×1016 ㎝- 2)摻雜造成氮化鎵
薄膜表面及結構的破壞。 最後,經由簡單的黃光製程,我們成功的
作出藍色發光二極體,藉由p-n 接面之電流電壓特性曲線來驗證前述
的霍爾系統量測的結果。在40mA 的電流驅動下其發光波長及半高寬
分別為415nm 及80nm。在80mA 的電流驅動下其發光波長及半高寬分
別為385nm 及80nm。在20mA 的電流驅動下具有約34V 之順向偏壓
(Vf)。在-10iA 的電流驅動下具有約-19V 逆向偏壓(Vr)
摘要(英) GaN, activation of Mg-doped GaN, Hall measurement and fabrication of
GaN n+-p junction. In addition, the device processing technologies were
also paid attention to investigate the low resistance ohmic contacts of
GaN. The current-voltage (I-V) characteristics were measured at room
temperature using an HP4145B semiconductor parameter analyzer.
The characteristics of multiple high dose Si implanted GaN were
studied. 28Si+ implantation into Mg-doped and unintentionally doped GaN,
followed by thermal annealing in N2, air, Oxygen ambiences has been
performed to achieve n+-GaN layers. We have successfully convert all
p-GaN to n type for annealing temperature from 750℃~1000℃. Multiple
implantations are used to form a uniform Si implanted region. The
implantation conditions (dose/energy) were 2’1015 cm-2/40 KeV, 5’1015
cm-2/100 KeV and 5’1015 cm-2/200 KeV. The carrier concentration of the
film changed from 3×1017 cm-3 ( p-type ) to 5×1019 cm-3 ( n-type, Sheet
carrier concentration ns =3×1015 cm-2 ) when the Si-implanted p-type
GaN was annealed in N2 ambience at 1000℃. The activation efficiency
of Si in Mg-doped GaN is 27%. Decrease the implantation dose to 8’1014
cm-2/40 KeV, 2’1015 cm-2/100 KeV and 2’1015 cm-2/200 KeV, the carrier
concentration of the film changed from 8×1016 cm-3 ( n-type ) to 4.2×
1019 cm-3 ( n-type, Sheet carrier concentration ns=2.5×1015 cm-2 ) when
the Si-implanted un-doped n-type GaN was annealed in N2 ambience at
1100℃. The activation efficiency of Si in un-doped GaN is as high as 53
﹪. In addition, specific contact resistance( rc ) of Ti/Al/Pt/Au ohmic
contacts to n+-GaN, which formed by 28Si+ implantation in p-type GaN,
were also evaluated by transmission line model( TLM ). The rc is as low
as 1.5×10-6 W-cm2 when the metal contact was annealed in N2 ambience
at 600℃. The specific contact resistance ( rc )of Indium tin Oxide(ITO)
as-deposited on n+-GaN which formed by 28Si+ implantation in p-type
GaN and annealing 1000℃ 15min and 30min were 2×10-4 U-㎝ 2 and 8
×10-5 U-㎝ 2 .
The as-grown material and these implanted samples were also
characterized by photoluminescence (PL) using a 10mW He-Cd Laser
(325nm) excitation source with the spectra taken at room temperature.
The PL spectra showed that no emission peaks of these implanted
samples, this may be attributed that surface damages and amorphized
structure of GaN by high dose (1.2E16 cm-2) 28Si+ implantation.
The activation of metal organic chemical vapor deposition-grown
Mg-doped GaN by N2 annealing has been investigated. P type
conductivity with a net acceptor concentration of 1×1018 cm-3 and a
mobility of 4 ㎝2/VS was obtained by annealing 750℃. Variable
temperature Hall measurement have revealed that activation energy of
Mg-acceptor was 109meV after 750℃ anneal.
Finally , the n+-p LED by 28Si+ implantation are fabricated and
characterized at room temperature(RT). The room temperature (RT)
current-voltage characteristic exhibits that a turn on voltage measured at
100iA was equal to 1.5V; the forward voltage measured at 20mA was
equal to 34V. The breakdown voltage measured at -10iA was equal to
-19V. The room temperature (RT) electroluminescence (EL) is dominated
by an emission at 415nm(2.98eV) with a linewidth of 80nm(600meV) at
injection current of 10~50mA. When the injection current increases up to
60mA~80mA, the emission is dominated by the peak at 385nm(3.22eV).
The EL intensity linearly increases with increasing injection current.
As mentioned above of n+-p junction, this supports the Hall effect
data for convert the p-GaN to n type conduction.
論文目次 Abstract (in Chinese)
Abstract (in English)
Acknowledgment
Figure Captions
Chapter 1 Introduction
1-1 The Background of Research on GaN … … … … … … … … ...1
1-2 Overview of This Thesis … … … … … … … … … … … … … …2
1-3 Reference … … … … … … … … … … … … … … … … … … …. ..4
Chapter 2 Experimental Techniques and Related Analysis
Systems
2-1 Ion Implantation… … … … … … … … … … … … … … … … … 5
2-2 Doping Profile Analysis Secondary Ion Mass Spectrometry.5
2-3 Carrier Concentration and Mobility Measurement by Hall
Measurement … … … … … … … … … … … … … … … … … … . . 6
2-4 Photoluminescence … … … … … … . . … … … … … … … … … … 7
2-5 X-Ray Diffraction … … … … … . … … … … … … … . … … … … 8
Chapter 3 Multiple High Dose Si Implantation in GaN
3-1 Introduction… … … … … … … … … … … … … … … … … … . . 11
3-2 Experiment … … … … … … … … … … … … … … … … … …...13
3-3 Ion Range and Distribution of Si Implantation… … . . … … . . 1 5
3-4 Reference … … … … … … … … … … … … … … … … … … … . . 1 8
Chapter 4 Activation of Si Implanted GaN
4-1 Electrical Result of Activated GaN by Hall Measurement. 19
4-1-1 Electrical Result of Multiple High Dose (1.5E16) Si
Implanted GaN… … … … … … … … … … … … … … 19
4-1-2 Electrical Result of Multiple High Dose (1.2E16) Si
Implanted GaN … … … … … … … … … … … … … … … . 22
4-1-3 Electrical Result of Multiple High Dose (4.8E15) Si
Implanted GaN … … … … … … … … … … … … … … … . 26
4-1-4 Structure Analysis of Activated GaN by X-ray
Diffraction … … … … … … … … … … … … … … … … … 28
4-1-5 Conclusion… … … … … … … … … … … … … … … … 29
4-2 Variable Temperature Hall Measureme nt of Si Implanted
GaN … … … … … … … … … … … … … … … … … … … … …..30
4-3 Low Resistance Ohmic Contact on n-type GaN … … … … ..31
4-3-1 Ti/Al/Pt/Au Ohmic Contact to n+-GaN… … … … … … 3 3
4-3-2 Indium tin Oxide Ohmic Contact to n+-GaN… … … … 3 5
4-4 Reference … … … … … … … . … … … … … … … … … … … …..38
Chapter 5 Fabrication of GaN n+- p Diode
5-1 Introduction… … … … … … … … … … … … … … … … … . . … 40
5-2 Characterization of Annealing Mg-doped GaN … … . … … . .42
5-2-1 Experiment … … … … … … … … … … … … . … … … . … . 44
5-3 Process of LED Device … … … … … … … … … … … … … …4 8
5-4 Characteristics of the n+-p LED by Si Implanted GaN … … 50
5-5 Reference … … … … … … … … … … … … … … … … . … … … 5 3
Chapter 6 Conclusion and Future Work
6-1 Reference … … … … … … … … … … … … … … … … . … … … 5 7
參考文獻 Reference in Chapter 1
1. R. Juza and H. Hahn, Anorg. Allegem. Chem., Vol.234,282(1940).
2. W. R. L. Lambert and B. Segall, “Band structure of pure GaN”,
Properties of Group III Nitrides, J. Edgar, Editor, INSPEC, London
1994.
3. S. Nakamura, M. Senoh, and T. Mukai, “Highly P-Type Mg-Doped
GaN Films Grown with GaN Buffer Layers”, Jpn. J. Appl. Phys.
Vol.30, p.L1708-11(1991).
4. H. Amano, M. Kitoh, K. Hiramatsu, and I. Akasaki, “Gallium
Arsenide and Related Compounds 1989”, T. Ikoma and H. Watanabe,
Eds. Bristol, U.K.: UKIOP, 1990, pp. 725–730.
5. S. Nakamura, T. Mukai, M. Senoh, Appl. Phys. Lett., Vol.64. p. 1687,
(1994.)
6. S. J. Pearton, C. B. Vartuli, J. C. Zolper, C. Yuan, and R. A. Stall,
Appl. Phys. Lett. Vol.67, 1435 (1995).
7. J. C. Zolper, R. G. Wilson, S. J. Pearton, and R. A. Stall, Appl. Phys.
Lett. Vol.68, 1945 (1996)
8. Y.K. Song, M. Kuball, A. V. Nurmikko, G. E. Bulman, K.
Doverspike, S.T. Shappard, T. W. Weeks, M. Leonard, H. S. Kong,
H. Dieringer, and J.Edmonds, Appl. Phys. Lett. Vol.72, 1418 (1998)
S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T.
Matsushita, H. Kiyoku, Y. Sugimoto,T. Kozaki, H. Umemoto, M.
Sano, and K. Chocho, ibid. 72,211(1998)
9. Yoshida and J. Suzuki, Jpn. J. Appl. Phys., Part 2 Vol.37, L482
Reference in Chapter 5
1. C. P. Kou, R. M. Flecther, T. D. Ostenowski, M. C. Lardizabal,
M. G. Craford, and V. M. Robbins, Appl. Phys. Lett., Vol.57, p.2937,
(1990)
2. H. Sugawara, M. Ishikawa, and G. Hatakoshi, Appl. Phys. Lett.,
Vol.58, p. 1010, (1991).
3. D. Dingle, K. L. Shaklee, R. F. Leheny, and R. B. Zetterstrom,
Appl. Phys. Lett., Vol. 64, p. 1377, (1974).
4. J. I. Pankove, E. A. Miller, and J. E. Berkeyheiser, RCA Rev.,
Vol. 32, p. 383, (1971).
5. H. Amano, M. Kitoh, K. Hiramatsu, and I. Akasaki, “Gallium
Arsenide and Related Compounds 1989”, T. Ikoma and H.
Watanabe, Eds. Bristol, U.K.: UKIOP, pp. 725–730. (1990).
6. S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett., Vol.
64, p. 1687, (1994)
7. S. Nakamura, J. Cryst. Growth, Vol. 145, p. 911, (1994).
8. S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett., Vol.
64, p. 1687, (1994).
9. AMANO, H., KITO, M., HIRAMATSU, K., and AKASAKI, I.:
“p-type conduction in Mg-doped GaN treated with low-energy beam
irradiation”, Jpn. J. Appl. Phys., Vol.28, pp. L2212-L2214, (1989).
10. AMANO, H., KITO, M., HIRAMATSU, K., and AKASAKI, I.:
“Growth and luminescence properties of Mg-doped GaN prepared
by MOVPE: J. Electrochem. Soc., Vol.137, pp.1639-1641, (1990)
11. AMANO, H., AKASAKI, I., KOZAWA, T., HIRAMATSU, K.,
54
SAWAKI, N.: “Electron beam effects on blue luminescence of
zinc-doped GaN”, J. Lumin. Vol.41&42, pp.121-122, (1988)
12. NAKAMURA, S., MUKAI, T., SENOH, M., and I WASA,
N., ”Thermal annealing effects on p-type Mg-doped GaN films”, Jpn.
J. Appl. Phys., Vol.31, pp. L139-L142, (1992).
13. J. K. Sheu and Y. K. Su, G. C. Chi and B. J. Pong, C. Y. Chen, C. N.
Huang, and W. C. Chen, “Photoluminescence spectroscopy of
Mg-doped GaN” J. Appl. Phys., Vol. 84, No. 8, (1998).
14. J. K. Sheu and Y. K. Su, G. C. Chi, M.J. Jou, C.C. Liu, C.M. Chang,
“Indium tin Oxide ohmic contact to highly doped n-GaN”
Solid-State Electronics Vol.43 p.2081-2084, (1999).
15. J. K. Sheu and Y. K. Su, G. C. Chi, M.J. Jou, C.C. Liu, Appl. Phys.
Lett. Vol.74, p. 2340, (1999).
16. R. P. Vaudo, I. D. Geoepfert, T. D. Moustakas, D. M. Beyea, T. J.
Frey, and K. Meehan, J. Appl. Phys., Vol. 79, p.2779, (1996)
17. N. Grandjean, J. Massies, M. Leroux, and P. Lorenzini, ”Ultraviolet
GaN light-emitting diodes grown by molecular beam epitaxy using
NH3” Appl. Phys. Lett. Vol.72, p. 82-84, (1998).
18. X.A. Cao, J.R. LaRoche, F. Ren, S.J. Pearton, J.R. Lothian R.K.
Singh, R.G. Wilson, H.J. Guo, S.J. Pennycook, “Implanted p-n
junctions in GaN”, Solid-State Electronics, Vol.43, p.1235-1238
Reference in Chapter 6
1. X. A. Cao, J. R. LaRoche, F. Ren, S.J. Pearton, J.R. Lothian R.K.
Singh, R.G. Wilson, H. J. Guo, S.J. Pennycook, “Implanted p-n
junctions in GaN”, Solid-State Electronics, Vol.43, p.1235-1238
(1999)
2. J. C. Zolper, R. J. Shul, and A.G. Baca, R.G. Wilson, S.J. Pearton, R.A.
Stall, ”Ion-implanted GaN junction field effect transistor” Appl. Phys.
Lett. Vol.68, p. 2273-2275, (1996).
3. J. C. Zolper, D. J. Rieger, and A.G. Baca, S.J. Pearton and J. W. Lee,
R.A. Stall, ” Sputter AlN encapsulant for high temperature annealing
GaN”, Appl. Phys. Lett. Vol.69, p. 538-540, (1996).
Reference in Chapter 4
1. X. A. Cao, C. R. Abernathy, R. K. Singh, S. J. Pearton, M. Fu, V.
Sarvepalli, J. A. Sekhar, J. C. Zolper, D. J. Rieger, J. Han, T. J.
Drummond and R. J. Shul, Appl. Phys. Lett. Vol.73, 229(1998).
2. W. C. Lai, M. Yokoyama, C. C. Tsai, C. S. Chang, J. D. Guo, J. S.
Chan and C. Y. Chang, Jpn. J. Appl. Phys, Vol.38, L802(1999)
3. J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, C. C. Liu
and W. C. Hung, Appl. Phys. Lett. Vol.74, 2340 (1999).
4. J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, C. C. Liu,
W. C. Hung, J. S. Bow and Y. C. Yu, J. Vac. Sci & Tech B. Vol.18,
729 (2000).
5. X. A. Cao, J. R. LaRoche, F. Ren, S. J. Pearton, J. R. Lothian, R. K.
Singh, R. G. Wilson, H. J. Guo and S. J. Pennycook, Solid-State
Electronics Vol.43, 1235(1999).
6. S. Nakamura, N. Iwasa, Senoh, and T. Mukai, M, Jpn. J. Appl.
Phys., Vol.31, 1258 (1992).
7. J.C. Zolper, in GaN and Related Materials, ed. S.J. Pearton (Gordon
and Breach, (1997).
8. J. K. Sheu, M. S. Tsai, C. H. Kuo, L. W. Wu, and G. C. Chi, will be
published elsewhere.
9. J. S. Foresi and T. D. Moustakas, Appl. Phys. Lett. Vol.62, 2859
(1993).
10. M. E. Lin, Z. Ma, F. Y. Huang, Z. F. Fan, L. H. Allen, and
H.Morkoc﹐,Appl. Phys. Lett. Vol.64, 1003 (1994).
39
11. S. C. Binari, H. B. Dietrich, G. Kelner, L. B. Rowland, K.
Doverspike, and D. K. Gaskill, Electron. Lett. Vol.30, 909 (1994).
12. P. Hacke, T. Detchprohm, K. Hiramatsu, and N. Sawaki, Appl. Phys.
Lett.Vol.63, 2676 (1993).
13. C. T. Lee and H. W. Kao, Appl. Phys. Lett. Vol.76, 2364 (2000).
14. F. Zhu, P. Jennings, J. Cornish, G. Hefter, K. Luczak, Sol. Energy
15. Mater. Sol. Cells Vol. 49 163. (1997)
16. F. Zhu, T. Fuyuki, H. Matsunami, J. Singh, Sol. Energy Mater. Sol.
17. Cells Vol. 39 (1995)
18. J.S. Kim, M. GranstroEm, R.H. Friend, et al., J. Appl. Phys.
p.6859.Vol. 84 (1998)
19. C.C. Wu, C.I. Wu, J.C. Sturm, A. Kahn, Appl. Phys. Lett.
P.1348.Vol.70 (1997)
Reference in Chapter3
1. J. I. Pankove and J. A. Hutchby, Appl. Phys. Lett. Vol.24, 281 (1974).
2. J. I. Pankove and J. A. Hutchby, J. Appl. Phys. Vol.47, 5387 (1976).
3. H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, Jpn. J. Appl.
Phys., Vol.28, L2112(1989).
4. S. Nakamura, N. Iwasa, Senoh, and T. Mukai,M, Jpn. J. Appl. Phys.,
Vol.31, 1258 (1992 ).
5. S. J. Pearton, C. R. Abernathy, C. B. Vartuli, J. C. Zolper, C. Yuan, a
nd R. A. Stall, Appl. Phys. Lett. Vol.67, 1435 (1995).
6. J. C. Zolper, R. G. Wilson, S. J. Pearton, and R. A. Stall, Appl. Phys.
Lett. Vol.68, 1945 (1996).
7. J. H. Edgar, “Properties of Group III Nitrides”, p273(INSPEC,
London, United Kingdom, 1994)
8. J. A. Van Vechten, Phys. Rev. B7, 1479(1973)
9. H. H. Tan, J. S. Williams, J. Zou, D. J. H. Cockayne, S. J. Pearton
and R. A. Stall, Appl. Phys. Lett. Vol.69, 2364(1996).
10. C. J. Eting, P. A. Grudowski, R. D. Dupuis, H. Hsia, Z. Tang, D.
Becher, H. Kou, G. E. Stillman and M. Feng, Appl. Phys. Lett.
Vol.73, 3875(1998).
11. X. A. Cao, C. R. Abernathy, R. K. Singh, S. J. Pearton, M. Fu, V.
Sarvepalli, J. A. Sekhar, J. C. Zolper, D. J. Rieger, J. Han, T. J.
Drummond and R. J. Shul, Appl. Phys. Lett. Vol.73, 229(1998).
12. W. C. Lai, M. Yokoyama, C. C. Tsai, C. S. Chang, J. D. Guo, J. S.
Chan and C. Y. Chang, Jpn. J. Appl. Phys, Vol.38, L802(1999)
指導教授 紀國鐘(Gou-Chung Chi) 審核日期 2001-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明