博碩士論文 87227011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:2 、訪客IP:3.94.129.211
姓名 吳怡瑾( Yi-Chin Wu)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 多層非均勻介質之微波散射模擬分析
(Numerical Simulation of Scattering from Inhomogeneous Layered Medium)
相關論文
★ 2.4GHz無線傳輸系統於遙測與GPS數據整合之研製★ 2.4GHz之無線電波室內傳播通道特性量測與分析
★ K波段地面鏈路降雨衰減效應之研究★ Ka 波段地面鏈路降雨效應與植被遮蔽 效應之研究
★ 地面遙測影像雷達發射與接收模組之設計★ 合成孔徑雷達之移動目標物速度估測研究
★ 小波轉換於合成孔徑雷達干涉相位雜訊之研究★ Ka波段台灣地區降雨及地面環境傳播特性研究
★ 雨滴粒徑分佈應用於Ka波段降雨衰減估計之研究★ 全偏極合成孔徑雷達非監督式目標分類與極化方位角偏移效應估算之研究
★ 全偏極合成孔徑雷達於目標分類之研究★ 影像融合技術應用於地表分類之探討
★ 應用共軛梯度演算法在掃描式合成孔徑雷達目標物特徵增強處理★ 台灣北部地區Ka波段降雨衰減模式之研究
★ 雨滴粒徑與植被遮蔽效應對Ka波段電波衰減影響之探討★ 基因演繹法於全偏極合成孔徑雷達影像對比強化最佳化之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在遙測方面的應用,我們首先要考慮到的是電磁波對於偵測物的散射現象。電磁波的表面散射現象相當複雜,我們除了必須考慮粗糙表面所產生的散射之外,還必須考慮到介質的不均勻產生的介電係數變化。在此,我們使用多層介質(N-multi-Layered Medium)來簡化數學模式,假設不均勻介質為分層的均勻介質,並且利用數值方法(numerical methods)使問題簡化,進一步模擬出格林函數(Green’s Function),用以求得散射場之場強。
本研究結果顯示,多層的非均勻介質所產生的散射效應是不能忽略不計的,並且和電磁波之極化具有相關性。
摘要(英) In wave propagation, a common problem occurs in describing the scattering at the interface between two media, such as the interfaces between air and ocean, air and soil air, and vegetation cover, etc. To some extent, all the interfaces will have some degree of roughness, which will complicate the scattering. The scattering of electromagnetic waves by lossy dielectric rough surfaces has broad applications because of the similarities to natural media. We use multi-layered media to simplify the problems about dielectric rough surfaces and simulate the Green Function by numerical method to compute the scattering field.
The simulations show that the effect of the inhomogeneous layered medium is non-negligible and is polarization dependent.
關鍵字(中) ★ 微波
★ 多層
★ 散射
★ 粗糙面
★ 非均勻
關鍵字(英) ★ microwave
★ layer
★ scattering
★ rough surface
★ i
論文目次 Abstract ………………………………………………………………IV
TABLE OF CONTENTS………………………………………………V
LIST OF FIGURES ……………………………………………………VII
LIST OF TABLE ………………………………………………………X
CHAPTER
1 Introduction
1.1Introduction ………………………………………………………………….. 1
1.2Objectives ……………………………………………………………………. 2
1.3Organization …………………………………………………………………. 4
2 Scattering from Rough Surface
2.1 Background …………………………………………………………………. 5
2.2 Analytic Theory …………………………………………………………….. 6
2.3 Numerical Methods …………………………………………………………. 8
3 Numerical Simulations of Scattering from Inhomogeneous Dielectric Rough Surfaces Based on Physics-Based Two-Grid Method
3.1 Introduction ………………………………………………………………… 14
3.2 Formulation ………………………………………………………………… 15
3.3 The Physics-Based Two-Grid Method ……………………………………… 21
3.4 Inclusion of Reflected Part of the Dyadic Green’s Function ……………….. 28
4 Scattering from Layered Medium
4.1 Reflection from Layer Medium …………………………………………….. 36
4.1.1 Reflection Coefficient for TE and TM Waves ………………………... 36
4.1.2 Computations of The Reflection Coefficient of Sea Ice ……………… 37
4.1.3 Computations of The Reflection Coefficient of Two-Layer Soil ……... 42
4.1.4 Computations of The Reflection Coefficient of Two-Layer Sea Ice ……46
4.2 Computations of the and …………………………………….. 52
4.2.1 Sea Ice …………………………………………………………………... 60
4.2.2 Soil ……………………………………………………………………… 64
4.2.3 Discussions ……………………………………………………………....72
4.3 Numerical Results …………………………………………………………….. 75
5 Conclussions…………………………………………………………………...…80
References…………………………………………………………………………..81
參考文獻 [01] Beckmann, P., and A. Spizzichno, The Scattering of Electromagnetic Waves from
Rough Surfaces, New York: MacMillan, 1963.
[02] Bass, F. G., and I. M. Fuks, Wave Scattering from Statistically rough Surfaces,
translated by C. B. Vesecky and J.F Vesecky, Oxford, UK: Pergamon Press, 1979.
[03] Ishimaru, A., Wave Propagation and Scattering in Random Media, New York: Academic Press, 1978.
[04] Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Active and Passive, vol. 2, Norwood, Massachusetts: Artech House, 1982.
[05] Tsang, L., J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing, New York: Wiley-Interscience, 1985.
[06] Thorsos, E. I., and D. R. Jackson, “The validity of the perturbation approximation for rough surface scattering using a Gaussian roughness spectrum,” J. Acoustical Soc. Am., vol.86, no. 1,pp.261-272, January 1989.
[07] Winebrenner, D.P. and A. Ishimaru, “Application of the phase-perturbation technique to randomly rough surface,” Journal of Optical Society of America A, vol. 2, pp. 2285-2294, 1985a.
[08] Winebrenner, D.P. and A. Ishimaru, “Investigation of a surface field perturbation technique for scattering from rough surface,” Radio Science, vol. 20, pp. 161-170, 1985b.
[09] Ishimaru, A. and J.S. Chen, “Scattering from Very Rough Surfaces Based on the Modified Second Order Kirchhoff Approximation with Angular and Propagation Shadowing,” J. Acoustical Soc. Am. A, vol. 88, no.4, pp. 1877-1883, October 1990.
[10] Chen, J. S., and A. Ishimaru, “Numerical simulation of the second order Kirchhoff approximation from very rough surfaces and study of backscattering enhancement,” J. Acoustical Soc. Am., vol. 88,pp. 1846-1850, October 1990.
[11] Voronovich, A. G., Wave scattering from rough surfaces, Berlin: Springer-Verlag, 1994.
[12] Irisov, V. G., “Small slope expansion for Electromagnetic-wave Diffraction on a rough surface,” Wave in Random Media, vol. 4, pp. 441-452, 1994.
[13] Fung, A. K., Microwave Scattering and Emission Models and Their Applications, Norwood, Massachusetts: Artech House, 1994.
[14] Irisov, V. G., “Small slope expansion for thermal and reflected radiation from a rough surface,” Wave in Random Media, vol. 7, pp.1-10, 1997.
[15] Axline, R. M. and A. K. Fung, “Numerical computation of scattering from a perfectly conducting random surface,” IEEE Trans. Antennas Propagation, vol. 26, no. 3,pp. 482-488, May 1978.
[16] Thorsos, E. I., “The validity of Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum,” J. Acoustical Soc. Am., vol. 83, no. 1, pp. 78-92, January 1988.
[17] Lou, S. H., L. Tsang, C. H. Chan, and A. Isimaru, “Monte Carlo Simulation of Scattering Waves by a Random Rough Surfaces with the Finite Element Method and the Finite Difference Method,” Microwave Optical Tech. Letters, vol.3 no. 5, pp. 150-154, May 1990.
[18] Thoros, E. I., and D. R. Jackson, “studies of Scattering Theory Using Nuumerical Methods,” Waves in Random Media, vol. 3, pp. 165-190, 1991.
[19] Devayya, R., and D. J. Wingham, “The numerical calculation of rough surface scattering by the conjugate gradient method,” IEEE Trans. Geosciences Remote Sensing, vol. 30, pp. 645-648, 1992.
[20] Kim, Y., E. Rodriguez, and S. Durden, “A numerical assessment of rough surface scattering theories: Vertical polarization,” Radio Science, vol. 27, no. 4, pp. 515-527, July 1992.
[21] Tsang, L., C. H. Chan and H. Sangani, “A banded matrix iterative approach to Monte Carlo simulations of scattering of waves by large-scale random rough surface problems: TM case.” Electronic Letters, vol.29 no. 2, pp. 166-167, January 1993a.
[22] Tsang, L., C. H. Chan and H. Sangani, “Application of a Banded Matrix Iterative Approach to Monte Carlo Simulations of Scattering of Waves by a Random Rough Surface: TM Case,” Microwave Optical Tech. Letters, vol. 6, no. 2, pp. 148-151, February 1993b.
[23] Li, L. C. H. Chan, and L. Tsang, “Numerical simulation of conical diffraction of tapered electromagnetic waves from random rough surfaces and applications to passive remote sensing,” Radio Science, vol. 29, no. 3, pp. 587-598, May-June 1994.
[24] Chen, K.S. and A.K. Fung, “A Comparison of Backscattering Models for Rough Surfaces,” IEEE Trans. Geosciences Remote Sensing, vol. 33, no. 1, pp. 195-199, January 1995.
[25] Tsang, L., C.H. Chan, K. Pak and H. Sangani, “Monte Carlo simulations of large-scale problems of random rough surface scattering and applications to grazing incidence with the BMIA/ canonical grid method,” IEEE Trans. Antennas Propagation, vol. 43, no. 8, pp. 851-859, August 1995.
[26] Holliday, D., L. L. DeRaad, Jr., and G. J. St-Cyr, “Forward-backward: A new method for computing low-grazing angle scattering,” IEEE Trans. Antennas Propagation, vol. 44, pp. 722-729, May 1996.
[27] Michielssen, E. and W. C. Chew, “Fast Steepest Descent Path Algorithm for Analyzing Scattering from Two-dimensinal Objects,” Radio Science, vol. 31, no. 5, pp. 1215-1224, September-October 1996b.
[28] Kapp, D. A., and G. S. Brown, “A New Numerical Method for Rough Surface Scattering Calculations,” IEEE Trans. Antennas Propagation, vol. 44, pp. 711-721, May 1996.
[29] Chan, C. H., L. Tsang and Q. Li, “Monte-Carlo simulations of large-scale one-dimesional random rough surface scattering at near grazing incidence: penetrable case,” IEEE Trans. Antennas Propagation, vol. 46, no. 1, pp. 142-149, January 1998.
[30] Chou, H. T., and J. T. Johnson, “A novel acceleration algorithm for the computation of scattering from rough surfaces with the forward-backward method,” Radio Science, vol.33 no.5, pp. 1277-87, October 1998.
[31] Donhue, Donohue, D. J., H. C. Ku, and D. R. Thompson, “Application of Iterative Moment Method Solution to Ocean Surface Radar Scattering,” IEEE Trans. Antennas Propagation, vol. 46, no. 1, pp. 121-132, January 1998.
[32] Holliday, D., L. L. DeRaad, Jr., and G. J. St-Cyr, “Forward-backward: A new method for computing low-grazing angle scattering,” IEEE Trans. Antennas Propagation, vol. 46, pp. 101-107, January 1998.
[33] Johnson, J. T., “A Numerical Study of Low-Grazing Angle Backscatter from Ocean-Like Impedance Surfaces with the Canonical Grid Method,” IEEE Trans. Antennas Propagation, vol. 46, no. 1, pp. 114-120, January 1998.
[34] Lin, C. M., and C. H. Chan, “Monte Carlo Simulations for the Electromagnetic Scattering of Rough Surfaces by the Combined Wavelet Transform and Banded Matrix Iterative Approach/Canonical Grid Method,” Microwave Optical Tech. Letters, vol. 19, no. 4. pp 274-279, November 1998.
[35] Tran, P. and J. M. Elson, “Banded Method of Ordered Multiple Interaction for the Scattering of Electromagnetic Waves from a Rough Surface,” J. Optical Soc. Am. A, vol. 15, no. 6, pp. 1643-1643, June 1998.
[36] Li, Q., C. H. Chan, and L. Tsang, “Monte-Carlo Simulations of Wave Scattering from Lossy Dielectric Random Rough Surfaces Using the Physics-Baesd Two-Grid Method and Canonical Grid Method,”IEEE Trans. Antenna Propagation, vol. 47, no. 4, pp. 752-763, April 1999.
[37] Harrigton, R. F., Field Computation by Moment Method, New York: Macmillan, 1968.
[38] Chan, C. H., S. H. Lou, and L. Tsang, “Electromagnetic scattering of waves by random rough surface: A finite-difference time-domain approach,” Microwave and Optical Technology Letters, vol.4, no. 9, August 1991.
[39] West, J. C. and J. M. Strum, “On iterative approaches for electromagnetic rough surface scattering problem,” IEEE Transaction on Antennas and Propagation, vol.47, no.8, pp. 1281-1288, August 1999.
[40] Rokhlin, V., “Rapid Solution of Integral Equation of Classic Potential Theoty,” J. Computational Phys., vol. 60, pp. 187-207, 1983.
[41] Rokhlin, V., “Rapid Solution of Integral Equation of Scattering Theory in Two Dimensions,” J. Computatinal Phys., vol. 86, pp. 414-439, 1990.
[42] Engheta, N., W. D. Murphy, V. Roklin, and M.S. Vassilious, “The Fast Multi-pole Method (FMM) for Electromagnetic Scattering Problems,” IEEE Trans. Antennas Propagation, vol. 40, no. 6, pp. 634-641. June 1992.
[43] Coifman, R., V. Rokhlin, and S. Wandzura, “The Fast Multipole Method for the Wave Equation: A pedestrian Prescription, “IEEE Antennas Propagation Magazine, vol. 35, no. 3, pp. 7-12, June 1993.
[44] Lu, C. C., and W. C. Chew, “Fast algorithm for solving hybrid integral equations,” IEEE Proceedings-H, vol. 140, no. 6, pp. 455-160, December 1993.
[45] Michielssen, E. and A. Boag, “Multilevel Evaluation of Electromagnetic Fields for the Rapid Solution of Scattering Problem,” Microwave & Optical Tech. Letters, vol.7, no. 17, pp. 790-795, December 1994.
[46] Adamas, R. J. and G. S. Brown, “Use of Fast Multipole Method with Method of Order Multipole Interactions,” Electronics Letters, vol. 34, no.23; pp.2219-2220, Nov. 1998.
[47] Tran, P., V. Celli, and A. A. Maradudin, “Electromagnetic Scattering from a Two- dimensional, Randomly Rough, Perfectly Conducting Surface: Iterative Methods,” J. Optical Soc. Am. A, vol.11, no. 5, pp. 1686-1689, May 1994a.
[48] Tran, P. and A. A. Maradudin, “The Scattering of Electromagnetic Waves from a Randomly Rough 2D Metallic Surface,” Optics Communications, vol. 101, pp. 269-273, August 1994b.
[49] Tsang, L., C. H. Chan, K. Pak, and H. Sangani, “A BMI/FFT algorithm for the Monte Carlo simulations of large scale random rough surface scattering: Application to grazing incidence,” Proceeding of the IEEE Antennas Propagation Soc. Int. Symp., pp. 2028-2031, 1994.
[50] Pak, K., L. Tsang, C. H. Chan, and J. Johnson, “Backscattering Enhancement of Vector Electromagnetic Waves from Two-dimensional Perfectly Conducting Random Rough Surfaces Based on Monte Carlo Simulations,” J. Opt. Soc. Am. A, vol. 12, no. 11, pp. 2491-2499, 1995.
[51] Johnson, J. T., L. Tsang, R. Shin, K. Pak, C. H. Chan, A. Ishimaru, and Y. Kuga, “Backscattering Enhancement of Electromagnetic Waves from Two-dimensional Perfectly Conducting Random Rough Surfaces: A Comparison of Monte Carlo Simulations with Experimental Data,” IEEE Trans. Antennas Propagation, vol.44, pp. 748-756, 1996.
[52] Pak, K., L. Tsang, and J. Johnson, “Numerical Simulations and Backscattering Enhancement of Electromagnetic Waves from Two-dimensional Dielectric Random Rough Surfaces with the Sparse Matrix Canonical Grid Method,” J. Opt. Soc. Am. A, vol. 14, no. 7, pp. 1515-1528, July 1997.
[53] Wagner, R. L. and W. C. Chew, “A Ray-Propagation Fast Multipole Algorithm,”
Microwave & Optical Tech. Letters, vol. 7, no. 10, pp. 435-438, July 1994.
[54] Jandhyala, V., E. Michielssen, S. Balasubramaniam, and W. C. Chew, “A Combined Steepest Descent-Fast Multipole Algorithm for the Fast Analysis of Three-dimensional Scattering by Rough Surfaces,” IEEE Trans. Geosscienes Remonte Sensing, vol. 36, pp. 738-748, May 1998a.
[55] Jandhyala, V., B. Shanker, E. Michielssen, W. C. Chew, “A Fast Algorithm for the Analysis of Scattering by Dielectric Rough Surfaces,” J. Opt. Soc. Am. A, vol.15, no.7, pp. 1877-85, July 1998b
[56] D. J. Wingham and R. H. Devayya, “A Note on the Use of the Neumann Expanision in Calculating the Scatter from Rough Surfaces,” IEEE Trans. Antennas Propagation, vol. 40, no. 5, pp. 50-563, May 1992.
[57] G. Pelosi and R. Coccioli, “A finite element approach for scattering from inhomogeneous media with a rough interface,” Waves in Random Media, Vol.7, pp. 119-127, 1997.
[58] L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing, John Wiley & Sons, 1985.
[59] L. Tsang, Jun-Ho Cha, and J. R. Thomas, “Electric Fields of Spatial Green’s Functions of Microstrip Structures and Applications to The Calculations of Impedance Matrix Elements,” Microwave and Optical Technology Letters, vol. 20, no. 2, pp. 90-97, 1999.
[60] Vant et al. 1978
[61] Hallikainen,1980
指導教授 陳錕山(Kun-Shan Chen) 審核日期 2001-6-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明