博碩士論文 87322084 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:54.92.148.165
姓名 李志明( J-M Lee)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 影像最佳類別數目之研究
(The Validity Measurement of Fuzzy C-means Classifier for Remotely Sensed Images)
相關論文
★ 多時期衛星影像之自動化監督性分類★ 大範圍地區土地使用分類之研究
★ 高解析力衛星影像控制點座標之自動化萃取★ 遙控直昇機應用於工程管理監測可行性之研究
★ 以地理資訊系統輔助共同管道之最適設計★ 有理函數應用於空載多光譜影像幾何校正之研究
★ SPOT自然色影像產生之研究★ 結合影像區塊及知識庫分類之研究-以IKONOS衛星影像為例
★ 遙控飛機空載視訊影像自動化鑲嵌方法之研究★ 影像分割技術於高解析衛星影像分類之應用
★ 小波多層次解析之影像融合應用★ 線性複合模式應用於變遷偵測之研究
★ 改良式變異向量分析法於變遷偵測之探討★ 區塊分割變遷偵測法於多時期衛星影像之應用
★ 資料挖掘技術應用於外來入侵植物研究 (以恆春地區銀合歡為例)★ 空間資料挖掘方法應用於土地利用變遷之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) vised classification)與非監督性分類(unsupervised classifi-
cation)。監督性分類在訓練階段通常需要人工介入選取訓練區,當
類別較混雜時,此階段將是件費時且費力的工作。非監督性分類通
常需要人工介入部分是類別數目的給定,相對而言則較自動化。但
是,如何給定正確的類別數目這也是非監督性分類最困難的部分,
依據前人研究得知,可利用分類指標(cluster validity index)
作為類別數目判斷的參考。
一般非監督性的分類指標可分明確分類(Hard c-Means)指標
與模糊分類(Fuzzy c-Means)指標。台灣地區由於土地高度開發,
類別混淆情形相當常見,以明確分類方法(如ISODATA)為基礎的
指標容易判斷錯誤,而採用模糊分類方法為基礎的指標因可利用歸
屬值(membership)與模糊程度指標(fuzziness index)調整,相
對來說較具優勢。
一些相關研究顯示,分類指標必須同時考慮類別本身緊密性
(compactness)與類別之間分離性(separation)。因此,本研究嘗
試利用緊密性與分離性的模糊分類指標,應用於台灣地區多光譜衛
星影像非監督性分類的類別數目自動判斷。
摘要(英) to the mixture of the land cover clusters is normally found in the remote sensing image, it is also important to assign the proper fuzziness index for the fuzzy objective function before the fuzzy analysis can be performed.
This study employs a fuzzy clustering validity function, which
produces a validity index by calculating the overall average
compactness and separation of fuzzy clusters, to measure the valid number of the clusters and estimate the applicable fuzziness index for remote sensing image. Since the validity function is designed to detect compact and separated clusters, the smallest validity index certainly indicates an optimized measurement for cluster numbers and fuzziness index.
In order to obtain the smallest validity index, this study designs a series of measurements to compute the validity indexes against different fuzziness indexes and various cluster numbers. The measurements are implemented by using simulated multi-spectral data and SPOT images. The simulated image is used to obtain the applicable range of the fuzziness index. The preliminary result indicates that the fuzziness indexes ranging from 2 to 2.5 are able to cope with the relatively fuzzy images. The primary testing of SPOT images demonstrates that the fuzzy clustering validity function is able
to provide the proper guide for the determination of the number of clusters when the FCM algorithm is applied to satellite image classification.
關鍵字(中) ★ 分類指標
★ 非監督性分類
★ 模糊分類
關鍵字(英) ★ cluster validity index
★ unsupervised classificati
論文目次 目錄.I
誌謝III
中文摘要.V
AbstractVI
圖目錄VIII
表目錄X
第一章、緒論1
1.1 研究動機與目的1
1.2 文獻回顧2
第二章、研究方法10
2.1 非監督性分類理論10
2.1.1 明確分類(Hard c-Means)10
2.1.2 模糊分類(Fuzzy c-Means)15
2.2 密集性與離散性20
2.2.1 類別本身密集性計算20
2.2.2 類別之間離散性計算22
2.3 分類指標22
2.3.1 明確分類指標24
2.3.2 模糊分類指標26
第三章、模擬影像測試結果與討論32
3.1 模擬影像製作32
3.2 分類指標測試38
3.3 誤差分析43
3.4 結論49
第四章、SPOT衛星影像測試50
4.1 SPOT衛星影像簡介50
4.2 SPOT衛星影像A51
4.3 SPOT衛星影像B54
4.4 SPOT衛星影像C58
第五章、結論與建議61
5.1 結論61
5.2 建議62
參考文獻63
參考文獻 王玲玲,周紀夢著,常用統計方法,華東師範大學出版社,民國83年
徐守道,應用非監督性類神經網路於SPOT衛星影像分類最佳化之研究,碩士論文,國立中央大學土木工程研究所,中壢,1995
曾國雄,多變量解析與其應用,華泰書局,民國74年
藎壚,實用模糊數學,亞東書局,民國80年
Bezdek, J. C., 1973. Fuzzy mathematics in pattern classification,
Ph. D. Dissertation, Appl. Math. Cornell University, Ithaca,
New York.
Bezdek, J. C., 1980. A convergence theorem for the Fuzzy ISODATA clustering algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-2, No.1, p.1-8.
Bezdek, J. C., 1981. Pattern recognition with fuzzy objective function algorithms, Plenum Press, New York.
Bezdek, J. C. and Pal, Nikhil R., 1998. Some new indexes of cluster validity. IEEE Transactions on Systems, Man and Cybernetic-Part B: Cybernetics, Vol.28, No.3, p.301-315.
Boudraa, A. -O., 1999, Dynamic estimation of number of clusters in data sets. Electronics Letters, Vol.35, No.19, p.1606-1608.
Davies, D. L. and Bouldin, D. W., 1979.A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-1, No.2, p.224-227.
Duda, R. O. and Hart, P. E., 1973: Pattern classification and scene analysis, Wiley Interscience, New York.
Dunn, J. C., 1973.A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics, 3, 3, Jul-Sept., p.32-57.
Dunn, J. C., 1974.Well-separated clusters and optimal fuzzy partitions. Journal of Cybernetics, 4, 1, p.95-104.
Dunn, J. C., 1974. Some recent investigations of a new fuzzy partitioning algorithm and its application to pattern classification problems. Journal of Cybernetics, 4, 2, p.1-15.
Gunderson, M., 1978. Application of fuzzy ISODATA algorithms to star tracker pointing systems. Proceedings of 7th Triennial world IFAC Cong., Helsinki, Filind, p.1319-1323.
Hassar, H. and Bensaid, A. , “Validation of fuzzy and crisp c-partitions”, Fuzzy Information Processing Society, 1999. NAFIPS. 18th International Conference of the North American , p.342-346 , 1999
Kwon, S. H., 1998.Cluster validity index for fuzzy clustering. Electronics Letters, Vol.34, No.22, p.2176-2177.
Pal, N. R. and Bezdek, J. C., 1995.On cluster validity for the fuzzy c-means model. IEEE Transactions on Fuzzy System, Vol.3, No.3, p.370-379.
Pal, N. R. and Bezdek, J. C., 1997.Correction to On cluster validity for the fuzzy c-means model. IEEE Transactions on Fuzzy System, Vol.5, No.1, p.152-153.
Rhee, H. -S. and Oh, K. -W., 1996.A validity measure for fuzzy clustering and its use in selecting optimal number of clusters. Proceedings of the Fifth IEEE International Conference on Fuzzy Systems, Vol.2, p.1020-1025.
Rhee, H. -S. and Oh, K. -W., 1996.A performance measure for the fuzzy cluster validity. Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian Fuzzy Systems Symposium, p.264-369.
Rezaee, M. R., Lelieveldt, B. P. F. and Reiber, J. H. C., 1998.A new cluster validity index for the fuzzy c-mean. Pattern Recognition Letters, Vol.19 p.237-246.
Tou, J. T. and Gonzalez, R. C., 1974.Pattern Recognition Principles.Addison-Wesley.
Windham, M. P. 1982.Cluster validity for the fuzzy c-means clustering algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-4, N0.4, p.357-363.
Xie, X. L. and Beni, G., 1991.A validity measure for fuzzy clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.13, No.8, p.841-847.
Zahid, N., Limouri, M.and Essaid, A., 1999.A new cluster validity for fuzzy clustering. Pattern Recognition, Vol.32, p.1089-1097.
Zimmermann, Hans J., 1984.Fuzzy set theory and its applications: Kluwer-Nijhoff publishing.
指導教授 陳繼藩(Chi-Farn Chen) 審核日期 2001-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明