博碩士論文 87326021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:100.26.179.196
姓名 黃?珽( Yian Haung)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 單槽連續進流回分式活性污泥系統微生物菌相之研究
相關論文
★ 彩色濾光片生產線清潔生產之改善研究★ 以離子交換法處理半導體廠氫氧化四甲基銨廢液之研究
★ 建立量測水位、MLSS濃度與SS濃度及污泥沉澱速度光學量測裝置之研究★ 奈米晶相Fe(OH)3催化臭氧反應程序處理油煙VOCs之發展
★ 無塵室揮發性有機污染物防制對策的探討★ 應用數位影像技術於廢水真色色度監測之研究
★ 污水處理廠操作最佳化之研究★ 河川流域水土資源承載力與永續力評量模式之發展
★ 單槽連續進流回分式活性污泥系統溶氧控制之研究★ 工業區廢水管理資訊系統之發展與建立-以觀音工業區為例
★ 河川流域水管理系統動力學模式之發展與建立★ 連續流回分式活性污泥系統好氧相曝氣控制策略之研究-線上即時量測溶氧轉換率與需氧量方法之建立
★ 智慧型環境詞彙庫之發展與建置★ 環境法規資料庫之發展與建置
★ 連續流循序批分式活性污泥系統 好氧相即時曝氣控制策略之發展 — 低溶氧生物脫氮除磷程序控制技術之研究★ 永續發展虛擬圖書館之發展與建置
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 生物廢水處理系統主要是藉由不同的微生物進行污染物的分解以達到淨
化水質的效果,因此微生物菌群結構與系統處理效果具有相關性。然而,由於
傳統菌種分離培養及顯微鏡觀察等方法缺乏效率且易產生誤差,因此無法確切
顯示出菌群結構與處理效率之關係以作為系統操控之依據。近年來分子生物學
的發展,許多分子生物技術均可應用於菌群結構之分析,故本研究將評估,以
16S rDNA為分析基礎,利用聚合酉每 連鎖反應(polymerase chain reaction;PCR)
與變性梯度凝膠電泳法 (denaturing gradient gel electrophoresis;DGGE)等分子生
物技術的結合,分析單槽連續進流回分式活性污泥系統中污泥菌群結構變化之
可行性,此外,配合水質及監測數據的分析,以瞭解菌群結構變化對系統去除
效率及監測數據之影響性。由實驗結果顯示,PCR-DGGE技術確實可以靈敏地
追蹤單槽活性污泥系統中主要菌群變化狀況。當主要菌群菌群結構變化迅速
時,處理效率亦明顯受到影響,每個操作循環的氧化還原電位(ORP)監測曲線
差異性也隨之增大;當菌群結構朝向穩定狀態時,優勢菌群的代謝作用成為系
統最主要的分解機制,故去除率不再有明顯的波動,ORP 監測曲線變化趨勢也
呈現一致的狀態。
摘要(英) In biological wastewater treatment processes, the structure of microbial
community is one of the important factors which will affect operational performance
of the processes. The structure, however, is very difficult to examine and monitor
with traditional microbiological techniques, such as microscopy and cultivation.
Recently, the microbial community examining techniques, based on PCR
amplification of the 16S rDNA gene followed by denaturing gradient gel
electrophoresis (DGGE) of the amplicons, has become a useful technique for study of
the microbial community structure. Therefore, the purpose of this study is: (1) to find
out the suitability of applying the PCR-DGGE technique to examine the microbial
community structure of a single-tank continuous inflow SBR; (2) to find out the
relationship between the microbial community structure and the removal efficiency;
and (3) to find out the relationship between the microbial community structure and
the pattern of ORP profile. The results have shown that the rapid shift of populations
was observed in the period of the start-up stage, and succession toward a more stable
community structure along with cultivation time. As a relatively stable assemblage of
populations is achieved, the removal efficiency and the pattern of ORP profile are
almost constant. In conclusion, the PCR-DGGE technique is a feasible technology for
study of the dynamic variability of microbial community structure in the
continuous-flow SBR system.
關鍵字(中) ★ 微生物菌群結構
★ 分子生物技術
★ 聚合酉每 連鎖反應
★ 16S rDNA
★ 變性
關鍵字(英) ★ 16S rDNA
★ PCR (polymerase chain reaction
★ microbial community structure
論文目次 目錄……………………………………………………………………..Ⅰ
圖目錄…………………………………………………………………..Ⅳ
表目錄…………………………………………………………………..Ⅴ
第一章 前言
1-1 研究緣起………………………………………………………………1
1-2 研究目的………………………………………………………………2
第二章 文獻回顧
2-1 分類方法………………………………………………………………3
2-2 分子生物技術…………………………………………………………4
2-3 變性凝膠梯電泳法……………………………………………………6
2-3-1 基本原理…………………………………………………………..7
2-3-2 應用性……………………………………………………………..9
2-3-2-1 分析群落組成………………………………………………….9
2-3-2-2 分析群落動態變化…………………………………………….10
第三章 實驗設備與方法
3-1 實驗方法……………………………………………………………... .. 11
3-1-1 實驗設計……………………………...……………………………11
3-1-1-1 污泥來源………………………………………………………..11
3-1-1-2 污泥採樣時間及方法…………………………………………..12
3-1-1-3 水質採樣及監測數據……………………………………….….12
3-1-2 分析方法……………………………...…………………………....12
5
3-1-2-1 總DNA萃取……………………………………………………13
3-1-2-2 聚合酉每 連鎖反應(PCR).………………………………………. 14
3-1-2-3 變性梯度明膠電泳法(DGGE).……………………………….. 16
3-1-2-4 水質分析………………………………………………………. 18
3-2 實驗設備…………………………………………………………….… 18
3-2-1 單槽連續進流回分式活性污泥處理系統………………………... 18
3-2-1-1 反應槽………………………………………………………….. 19
3-2-1-2 系統監測及控制設備……………………………………...….. 20
3-2-1-3 操作條件……………………………………………………….. 20
3-2-2 其他分析設備…………………………………………………….. 22
第四章 結果與討論
4-1 應用PCR-DGGE 追蹤單槽活性污泥系統菌群變化之可行性評估.. 24
4-1-1 PCR 抑制問題之解決過程.………………………………..……. 24
4-1-2 馴養期菌群結構變化分析 …………...…………………………... 27
4-1-2-1 DGGE 圖譜結果………………………………………………. 27
4-1-2-2 馴養期菌群結構與植種污泥之比較………………………… 30
4-1-2-3 菌群組成變化趨勢分析……………………………………….31
4-1-3 穩定期菌群結構變化分析 ………………….………………...…..32
4-1-4 PCR-DGGE 技術可行性評估…………………………………... 35
4-1-5 不同操作相下菌群之變化 ………………………………………..36
4-2 主要菌群組成變化與水質、ORP 監測數據間之關係………………38
4-2-1 菌群消長變化與系統去除效率之相關性 ………………………..39
4-2-1-1 馴養期…………………………………………………………..39
4-2-1-2 穩定期…………………………………………………………..40
6
4-2-2 主要菌群組成變化與ORP 監測數據間之相關性……………….41
4-2-2-1 馴養期….……………………………………………………….41
4-2-2-2 穩定期…………………………………………………………..42
第五章 結論與建議
5-1 結論…………………………………………………………………….44
5-2 建議…………………………………………………………………….45
參考文獻…………………………………………………………………46
參考文獻 Al-Ghusain I. A., and J. O. Hao. 1995. Real-time control aerobic-anaerobic sludge
digestion using ORP. Jornual of Environmental Engeering. 121:717-720.
Amann, R. I., W. Ludwig, and K.-H. Schleifer. 1995. Phylogenetic identification and
in situ detection of individual microbial cells without cultivation. Microbiological
Reviews 59:143-169.
Barns, S. M., R. E. Fundyga, M. W. Jeffries, and N. R. Pace. 1994. Remarkerable
archaeal diversity detected in a Yellowstone National Park hot spring
environment. Proc. Natl. Acad. Sci. USA. 91:1609-1613.
Bitton, G. 1995. Wastewater Microbiology, Wiley, London.
Borneman, J., P. W. Skroch, K. M. O'Sullivan, J. A. Palus, N. G. Rumjanek, J. L.
Jansen, J. Nienhuis, and E. W. Triplett. 1996. Molecular microbial diversity of an
agricultural soil in Wisconsin. Appl. Envir. Microbiol. 62:1935-1943.
Bull, A. T., and J. H. Slater. 1982. Microbial interactions and community structure. In
A. T. Bull and J. H. Slater (eds.). Microbial Interactions and Communities.
Academic Press, London, pp.13-44.
Charpentier, J., M. Florentz, and G. David. 1987. Sequencing batch reactor system for
nutrient removal: ORP and pH profile. Wat. Sci. Tech. 19:645-655.
Charpentier, J., H. G. Martin, and Y. Mogno. 1989. Oxidation-reduction potential
(ORP) regulation as a way to optimize pollution removal and energy saving in
the low load activated sludge process. Wat. Sci. Tech. 21:1209-1233.
Curtis, T. P., and N. G. Caine. 1998. The comparison of the diversity of activated
55
sludge plants. Wat. Sci. tech. 37:71-78.
Duineveld, B. M., A. S. Rosado, J. D. van Elsas, and J. A. van Veen. 1998. analysis of
the dynamics of bacterial communitues in the rhizosphere of the chrysanthemum
via denaturing gradient gel electrophoresis and substrate utilization patterns. Appl.
Environ. Microbiol. 64:4950-4957.
Fantroussi, S. E., L. Verschuere, W. Verstraete, and E. M. Top. 1999. Effect of
phenylurea herbicides on soil microbial communities estimated by analysis of
16S rRNA gene fingerprints and community-Level physiological profiles. Appl.
Environ. Microbiol. 65:982-988.
Felske, A., B. Engelen, U. N?bel and H. Backhaus. 1996. Direct ribosomal
isolation from soil to extract bacterial rRNA for community analysis. Appl.
Environ. Microbiol. 62:4162-4167.
Ferris, M. J., G. Muyzer, and D. M. Ward. 1996. Denaturing gradient gel
electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring
microbial mat community. Appl. Environ. Microbiol. 62:340-346.
Fournier, D., R. Lemieux, D. Couillard 1998. Genetic evidence for highly diversified
bacterial populations in wastewater sludge during biological leaching of metals.
Biotechnology Letters 20(1): 27-31.
Fuhrman, J. A., K. McCallum, and A. A. Davis. 1993. Phylogenetic diversity of
subsurface marine microbial communities from the Atlantic and Pacific Oceans.
Appl. Environ. Microbiol. 59:1294-1302.
Gray, J. P., and R. P. Herwig. 1996. Phylogenetic analysis of the bacterial
communities in marine sediments. Appl. Environ. Microbiol. 62:4049-4059.
Hao, O. J., and J. Hunag. 1996. Alternating aerobic-anoxic process for nitrogen
56
removal: process evaluation. Water Environmental Research. 68:83-93.
Jenkins, C. J. and D. S. Mavinic. 1989. anoxic-aerobic digestion of wastewater
activated sludge: partⅡ-supernatant characterics, ORP monitoring results and
overall rating system. Environmental Technology Letters. 10:371-384.
Jensen, S., L. ?vreas, F. L. Daae, and V. Torsvik. 1998. Diversity in methane
enrichments from an agricultural soil revealed by DGGE separation of PCR
amplified 16S rDNA fragments. FEMS Microbiol. Ecol. 26:17-26.
Kowalchuk, G. A., J. R. Stephen, W. De Boer, J. I. Prosser, T. M. Embley, and J. W.
Woldendorp. 1997. Analysis of ammonia-oxidizing bacteria of the beta
subdivision of the class Proteobacteria in coastal sand dunes by denaturing
gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal
DNA fragments. Appl. Environ. Microbiol. 63:1489-1497.
Koch, f. A. and W. K. Oldham.1985. Oxidation-reduction potential-a tool of
monitoring, control and optimization of biological nurient removal system. Wat.
Sci. Tech. 17:259-281.
Lee, D.-H., Y.-G. Zo, and S.-J. Kim. 1996. Nonradioactive method to study genetic
profiles of natural bacterial communities by PCR-single-strand Conformation
polymorphism. Appl. Environ. Microbiol. 62:3112-3120.
Liesack, W. and E. Stackebrandt. 1992. Occurrence of novel groups of the domain
Bacteria as revealed by analysis of genetic material isolated from an Australian
terrestrial environment. J. Bacterial. 174:5072-5078.
Liu, W.-T., T. L. Marsh, H. Cheng, and L. J. Forney. 1997. Characterization of
microbial diversity by determining terminal restriction fragment length
polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol.
57
63:4516-4522.
Mathews, C. K., K. E. van Holde, and K. G. Ahern. 2000. Biochemistry. Third
Edition. Addison Wesley Longman.
Moyer, C. L., F. C. Dobbs, and D. M. Karl. 1994. Estimation of diversity and
community structure through restriction fragment length polymorphism
distribution analysis of bacterial 16S rRNA genes from a microbial mat at an
active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl. Environ.
Microbiol. 60:871-879.
Moyer, C. L., F. C. Dobbs, and D. M. Karl. 1995. Phylogenetic diversity of the
bacterial community from a microbial mat at an active, hydrothermal vent system,
Loihi Seamount, Hawaii. Appl. Environ. Microbiol. 61:1555-1562.
Murray, A. E., C. M. Preston, R. Massana, L. T. Taylor, A. Blakis, k. Wu, E. F.
DeLong. 1998. Seasonal and spatial variability of bacterial and archaeal
assemblages in the coastal waters near Anverse Island, Antarctica. Appl. Environ.
Microbiol. 64:2585-2595.
Murray, A. E., J. T. Hollibaugh, and C. Orrego. 1996. Phylogenetic composition of
bacterioplankton from two California estuaries compared by denaturing gradient
gel electrophoresis of 16S rDNA fragments. Appl. Environ. Microbiol.
62:2676-2680.
Muyzer, G. 1999. DGGE/TGGE a method for identifying genes from natural
ecosystems. Microbiology 2:317-322.
Muyzer, G., and K. Smalla. 1998. Application of denaturing gradient gel
electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in
microbial ecology. Antonie Van Leeuwenhoek. 73:127-141.
58
Muyzer, G., E. C. DeWaal, and A. G. Uitterlinden. 1993. Profiling of complex
microbial populations by denaturing gradient gel electrophoresis analysis of
polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ.
Microbiol. 59:695-700.
Myers, R. M., S. G. Fisher, L. S. Lerman, and T. Maniatis. 1985. Nearly all single
base substitutions in DNA fragments joined to a GC-clamp can be detected by
denaturing gradient gel electrophoresis. Nucleic Acids Res. 13:3131-3145.
Myers, R. M., T. Maniatis, and L. S. Lerman. 1987. Detection and localization of
single base changes by denaturing gradient gel electrophoresis. Methods in
Enzymology 155:501-527.
Nielsen, A. T., W. -T. Liu, C. Filipe, L. Grady, Jr., S. Molin, and D. A. Stahl. 1999.
Identification of a novel group of bacteria in sludge from a deteriorated biological
phosphorus removal reactor. Appl. Environ. Microbiol. 65:1251-1258.
Okabe, S., H. Satoh, and Y. Watanabe. 1999. In situ analysis of nitrifying biofilms as
determined by the in situ hybridization and the use of microeletrodes. Appl.
Environ. Microbiol. 65:3182-3191.
Pace, N. R. 1996. New perspectives on the natural microbial world: molecular
microbial ecology. ASM news 62:463-470.
Peddie, C. C., D. S. Mavanic and C. J. Jenkins. 1990. Use of ORP as monitoring and
control of aerobic sludge digestion. J. Environmental Engineering 116:461-471.
Raskin, L., J. M. Stromley, B. E. Rittmann, and D. A. Stahl. 1994. Group-specific
16S rRNA hybridization probes to describe natural communities of methanogens.
Appl. Environ. Microbiol. 60:1232-1240.
Raskin, L., D. Zheng, M. E. Griffin, P. G. Stroot, and P. Misra. 1995. Characterization
59
of microbial communities in anaerobic bioreactors using molecular probes.
Antonie Van Leeuwenhoek. 68:297-308.
R?lleke, S., G. Muyzer, C. Wawer, G. Wanner, and W. Lubitz. 1996. Identification of
bacteria in a biodegraded wall painting by denaturing gradient gel electrophoresis
of PCR-amplified gene fragments coding for 16S rRNA. Appl. Environ.
Microbiol. 62:2059-2065.
Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory
Manual. Second Edition. Cold Spring Harbor Laboratory Press, Cold Spring
Harbor.
Santegoeds, C. M., T. G. Ferdelman , G. Muyzer, and D. de Beer. 1998. Structure and
functional dynamics of sulfate-reducing populations in bacterial biofilms. Appl.
Environ. Microbiol. 64:3731-3739.
Schmidt, T. M., E. F. DeLong, and N. R. Pace. 1991. Analysis of a marine
picoplankton community by 16S rRNA gene cloning and sequencing. J.
Bacteriol. 173:4371-4378.
Sekiguchi Y., Y. Kamagata, K. Syutsubo, A. Ohashi, H. Harada, and K. Nakamura.
1998. Phylogenetic diversity of mesophilic and thermophilic granular sludge
determined by 16S rRNA gene analysis. Microbiology 144:2655-2665.
Sheffield, V. C., D. R. Cox, L. S. Lerman, and R. M. Myers. 1989. Attachment of a
40-base pair G+C-rich sequence (GC-clamp) to genomic DNA fragments by the
polymerase chain reaction results in improved detection of single-base changes.
Proc. Natl. Acad. Sci. USA 86:232-236.
Sheffield, V. C., J. S. Beck, E. M. Stone, and R. M. Myers. 1992. A simple and
efficient method for attachment of a 40-base pair, GC-rich sequence to
60
PCR-amplified DNA. BioTechniques 12: 386-387.
Snaidr, J., R. Amann, I. Huber, W. Ludwig, and K.-H. Schleifer. 1997. Phlogenetic
analysis and in situ identification of bacteria in activated sludge. Appl. Environ.
Microbiol. 63:2884-2896.
Somiya, I., H. Tsuno, and M. Matsumoto. 1988. Phosphorus release-storage reaction
and organics substrate behavior in biological phosphorus removal. Water
Research 22:49-58.
Stephen, J. R., A. E. McCaig, Z. Smith, J. I. Prosser, and T. M. Embley. 1996.
Molecular diversity of soil and marine 16S rRNA gene sequences related to β–
subgroup ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 62:4147-4154.
Stahl, D. A., B. Flesher, H. Mansfield, and L. Montgomery. 1988. Use of
phylogenetically based hybridization probes for studies of ruminal microbial
ecology. Appl. Environ. Microbiol. 54: 1079-1084.
Swift, M. J. 1984. Microbial diversity and decomposer niches. In M. J. Klug and C. A.
Reddy(eds.). Current perspectives in Microbial Ecology. American Society for
Microbiology, Washington, DC, pp. 8-16.
Teske, A., C. Wawer, G. Muyzer, and N. B. Ramsing. 1996. Distribution of
sulfate-reducing bacteria in a stratified fjord (Mariager fjord, Denmark) as
evaluated by most-probable-number counts and denaturing gradient gel
electrophoresis of PCR-amplified ribosomal DNA fragments. Appl. Environ.
Microbiol. 62:1405-1415.
Vallaeys, T., E. Topp, and G. Muyzer. 1997. Evaluation of DGGE in the detection of
16S rDNA sequence variation in rhizobia and methanotrophs. FEMS Microbial.
Ecol. 61:1444-1450.
61
Wagner, M., R. Erhart, W. Manz, R. Amann, H. Lemmer, D. Wedi, and K.-H.
Schleifer. 1994. Development of an rRNA-targeted oligouncleotide probe
specific for the genus Acinetobacter and its application for in situ monitoring in
activated sludge. Appl. Environ. Microbiol. 60:792-800.
Wagner, M., G. Rath, R. Amann, H.-P. Koops, and K.-H. Schleifer. 1995. In situ
identification of ammonia-oxidizing bacteria. System. Appl. Microbiol.
18:251-264.
Ward, D. M., M. J. Ferris, S. C. Nold , and M. M. Bateson. 1998. A natural view of
microbial biodiversity within hot spring cyanobacterial mat communities.
Microbial. Mol. Boil. Rev. 62:1353-1370.
Ward, D. M., R. Weller, and M. M. Bateson. 1990. 16S rRNA sequences reveal
numerous uncultured microorganisms in a natural community. Nature 344:63-65.
Watanabe, K., M. Teramoto, H. Futamata, and S. Harayama. 1998. Molecular
detection, isolation, and physiological characterization of functionally dominant
phenol-degrading bacteria in activated sludge. Appl. Environ. Microbiol.
64:4396-4402.
Wareham, D. G., K. J. Hall, and D. S. Mavinic. 1993. Real-time control of
aerobic-anoxic sludge digestion using ORP. J. Environmental Engineering
119:120-136.
Wilson, I. G. 1997. Inhibition and facilitation of nucleic acid amplification. Appl.
Environ. Microbiol. 63:3741-3751.
Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51:221-271.
Zhang, T., and H. H. P. Fang. 2000. Digitization of DGGE (denaturing gradient gel
electrophoresis) profile and cluster analysis of microbial communities.
62
Biotechnngy Letters. 22:399-405.
朱玉賢、李毅,1999,「現代分子生物學」,藝軒圖書出版社。
余瑞芳,1998,「連續流廢水處理系統操作之自動化與最佳化之研究」,國立中
央大學環境工程研究所博士論文。
呂學智、廖述良、余瑞芳、陳萬原,1995,「單槽連續流回分式活性污泥系統
自動化監控之初步探討-以ORP、pH 為監控參數之探討」,第二十屆廢水
處理技術研討會論文集,第2-69-2-75 頁。
卓伯全、張鎮南,1996,「以連續批分式接觸材程序分解含高氮有機物之研究」,
第二十一屆廢水處理技術研討會論文集,第176-183 頁。
張鎮南、陳婉如,1994,「以作為連續回分式活性污泥法去除含碳氮磷化物自
動控制之初探」,第十九屆廢水處理技術研討會論文集,第217-226 頁。
張鎮南、余瑞芳、陳婉如,1993,「好養生物處理系統中ORP 控制技術可行性
研究」,第十八屆廢水處理技術研討會論文集,第317-330 頁。
陳萬原,1996,「單槽連續進流回分式活性污泥系統自動監控策略之研究---以
ORP、pH 為監控參數」,國立中央大學環境工程研究所碩士論文。
楊素禎,1998,「單槽連續進流回分式活性污泥系統處理動態進流污水自動控
制之研究」,國立中央大學環境工程研究所碩士論文。
蘇慧慈,1996,「原位分子生物學技術」,徐氏基金會。
指導教授 廖述良(Shu-Liang Liaw) 審核日期 2001-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明