博碩士論文 88222003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:3.235.172.213
姓名 吳育慧( Yu-Huei Wu)  查詢紙本館藏   畢業系所 物理學系
論文名稱 度規仿射重力理論中的準局域能量-動量
(Quasilocal energy-momentumin Metric Affine Gravity)
相關論文
★ Kerr-Sen 時空的準局域能量與角動量★ Brill 波時空於特殊正交坐標系的初值問題之數值解
★ Teleparallel重力理論中的準局域能量、動量和角動量★ 廣義相對論理論中之準局域質心距
★ 幾何代數與微分形式間之轉換及其在重力之應用★ 幾何代數下的旋量與重力場正能量
★ 幾何代數與Clifforms之轉換及其於重力哈密頓函數與準局域量之應用★ Teleparallel 理論中之準局域質心距
★ 廣義相對論的準局域量的小球極限★ 重力場中準局域角動量的旋子表述
★ 有Torsion效應的宇宙★ 準區域的膺張量和陳聶式子
★ 準局部能量與參考系之選擇★ 在Kerr幾何的特殊正交座標系和狄拉克旋子
★ 球對稱時空的準局域能量★ Poincaré Gauge Theory with Coupled Even and Odd Parity Spin-0 Dynamic Connection Modes: Isotropic Bianchi Cosmologies
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 動量。MAG 理論的動機就是為了找出一重力的規範理論進一步邁向量子重力場,
我們意在結合MAG 理論與準局域表示式以得到經確解更多的資訊和進一步了解
準局域表示式的物理意義。利用Reduce 我們找到在MAG 理論中的準局域能量
其極限值為ADM 質量。
摘要(英) expressions for some exact solutions of the Metric-Affine gravity theory. The
motivation for the MAG theory is to formulate a gauge theory of gravity moving
towards a quantum gravity. Our intention in combining MAG and quasilocal quantities
is to both compare the results of several exact solutions in order to better understand
them and to further see the physical meaning of these quasilocal expressions. Using
Reduce, we found quasilocal values with reasonable asymptotic limits for these MAG
theory solutions.
論文目次 Contents Ⅰ
List of Tables Ⅲ
List of Graphs Ⅳ
1 Introduction 3
1.1 Introduction and outline … … … … … … … ..… … … … ..3
1.2 Why MAG theory… … … … … … … … … … ..… … … … .6
1.3 Gravitational energy-momentum… … … … ..… … … … ..9
2 Metric-Affine Gravity 10
2.1 MAG geometry framework… … … … … … … … … … ...10
2.2 Lagrange-Noether Machinery… … … … … … … … … ...12
2.3 Field equations… … … … … … … … … … … … … … … ..20
2.4 The quadratic gauge Lagrangian of the MAG… … … ..21
2.5 Some exact solutions for the MAG theory… … … … ...23
3 Hamiltonian approach 28
3.1 Covariant Hamiltonian formalism… … ...… … … … … ..28
3.2 Expressions for quasilocal quantities… … … … … … … 31
II
4 Evaluation of energy-momentum for some
exact solutions 34
4.1 Quasilocal energy-momentum
for some exact solutions… … … … … … … … … … … .34
4.2 Discussion of the results… … … … … … … … … … … ..41
5 Discussion 47
Appendix A: Irreducible decompositions… … … … … … 51
Appendix B: Reduce programs… … … … … … … … … … 56
References 64
參考文獻 [Ch] C. M. Chen and J. M. Nester, ”Quasilocal Energy-Momentum for Geometric
Gravity Theories”, Class. Quantum Grav. 16 1279-304 (1999);
gr-qc/9809020.
[Ch1] C. M. Chen and J. M. Nester, “A symplectic Hamiltonian derivation of
quasilocal energy-momentum for GR”, Gravitation & Cosmology 6 (2000)
257-270; gr-qc/0001088.
[De] 笛卡兒 (Descartes), “方法導論, 沉思錄, 哲學原理 (A Discourse on
Method, Meditations and Principles of Philosophy) ”,譯者: 錢志純, 黎惟東;
志文出版 民 73
[Ch2] C. C Chang, J.M. Nester and C.M. Chen, “Pseudotensors and quasilocal
energy-momentum”, Phys. Rev. Lett. 83 1897-901 (1999); gr-qc/9809040.
[Gr] F. Gronwald: “Metric-Affine Gauge Theory of Gravity, I. Fundamental
Structure and Field Equations”. Int. J. Mod. Phys. D6 (1997) 263-303. Los
Alamos E-Print Archive: gr-qc/9702034.
[Hea] A. C. Hearn, “REDUCE User’s Manual”, Rand Publication CP78, The Rand
Corporation, Santa Monica, CA 90406 (1985)
[He] F.W. Hehl, J. D. McCrea, E, W. Mielke, and Y. Ne’eman: “Metric-Affine
Gauge Theory of Gravity: Field Equations, Noether Identities, World Spinors,
and Breaking of Dilation Invariance”, Phys.Rep. 258 (1995) 1.
[He1] F.W. Hehl and A. Macias: “Metric-Affine Gauge Theory of Gravity, II. Exact
solutions”, gr-qc/9902076 v2
[Ho] J. K. Ho, De-Ching Chern, and J. M. Nester: “Some Spherically Symmetric
65
Exact Solutions of the Metric-Affine Gravity Theory”, Chinese J. of Phys. 35
(1997) 640-650.
J.K. Ho, ”Some spherically symmetric exact solutions of the Metric-Affine
Gravity theory”, MSc. Thesis (National Central University, Chungli, 1996).
[Ka] Immanuel Kant, “Critique of pure reason”.
康德, 純粹理性批判 /牟宗三 譯註 台北市 :臺灣學生 民77
[Lao] Lao-tse, “Tao Te Ching”. Translated by Charles Muller, 1991.
生命中的大智慧----老子 /余培林撰
台北市 : 時報文化出版公司, 民70
[Le1] C.Y. Lee ,”Renormalization of quantum gravity with local GL(4,R) symmetry”,
Class. Quantum Grav. 9 (1992) 2001
[Le2] C.Y. Lee and Y.Ne’eman: “Renormalization of gauge-affine gravity”, Phys.
Lett. B242 (1990) 59.
[Le3] C.Y. Lee and Y.Ne’eman: “BRST transformations for an affine gauge model of
gravity with local GL(4,R) symmetry”, Phys.Lett. B233 (1989) 286.
[Ma] A. Macias, E. W. Mielke, J.Socorro: “Solitonic monopole solution in
metric-affine gauge theory carrying Wely charges”, Class. Quantum Grav. 15
(1998) 445-452
[Ma1] A. Macias, J.Socorro: “Generalized Reissner-Nordstrom solution in
metric-affine gravity”, Class. Quantum Grav. 16 (1999) 2323-2333
[MTW] Misner C W, Thorne K S and Wheeler J A “Gravitation” (Freeman, San
66
Francis, 1973).
[Ne] Y. Ne’eman and F.W. Hehl: “Test matter in a spacetime with nonmetricity”
Class. Quantum Grav. 14 (1997) A251-A259.
[Ob] Yu.N. Obukhov and R. Tresguerres, “Hyperfluid- a model of classical matter
with hypermomentum”, Phys. Lett. A184 (1993) 17-22.
[Pe] R. Penrose, “The emperor’s new mind concerning computers, mind, and the
laws of physics”, Oxford New York: Oxford University Press, 1989.
[Tr] R. Tresguerres: “Exact vacuum solutions of 4-dimensional metric-affine gauge
theories of gravitation”, Z. Phys. C65 (1995) 347-354.
[Tr1] R. Tresguerres: “Exact static vacuum solution of four-dimensional metric-affine
gravity with nontrivial torsion”, Phys.Lett.A200 (1995) 405-410.
[Vl] E.J.Vlachynsky, R. Tresguerres, Yu. N. Obukhov, F.W. Hehl: “An axially
symmetric solution of metric-affine gravity”, Class. Quantum Grav. 13 (1996)
3253-3259.
指導教授 聶斯特(James M. Nester) 審核日期 2001-6-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明