博碩士論文 88225015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:3.234.208.66
姓名 林秋萍( Qeo-Ping Lin)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 最大餘震發生時間之統計分析
相關論文
★ 藥物最低有效劑量之無母數鑑別★ 根據貝氏檢定建構的第一期臨床試驗設計
★ 第一期臨床試驗之貝氏調適設計★ 強餘震之即時貝氏預測
★ 鑑別最佳添加藥物劑量的兩階段早期臨床試驗設計★ 臺灣地區地下水品質之統計研究
★ 右設限存活資料之下每日可服劑量之研究★ 集集餘震之統計研究
★ 多群資料下最低有效劑量之聯合鑑別★ 最大餘震規模之統計分析
★ 地震預測之統計分析★ 加權Kaplan-Meier統計量之推廣
★ 鑑別藥物最低有效劑量之檢定★ 餘震序列RJ模型之貝氏分析
★ 藥物最低有效劑量之穩健鑑別★ 台灣強震之時間與規模預測模型
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 題之一。本文主要探討主震與最大餘震發生時間差T1 之分布,
並且研究其與相關資料之關係,其中相關資料如主震規模
(M0)、主震發生之震源深度(depth)及修正Omori 模式中的參
數p 值。本文引用日本、紐西蘭、台灣及希臘等四個地區之歷史
餘震序列資料,分析各地區T1 之機率分布,並探討此三者變數
(M0、p 值,與depth)對於T1 的影響,藉以了解各地區最大餘
震發生時間與其主震特性及餘震衰退率的關係。最後評估並討論
不同地區之最大餘震發生時間之風險。
論文目次 第一章 緒論......................1
第二章 地震相關知識與文獻回顧............ 4
2.1 地震相關知識...................4
2.2 修正Omori 模式................. 7
2.3 最大餘震發生時間之機率模型........... 9
2.4 最大餘震發生時間與其他變數的關係....... 12
2.5 p 值之估計................... 14
第三章 各地區之實例分析............... 17
3.1 日本地區.................... 18
3.2 紐西蘭地區................... 24
3.3 台灣地區.................... 30
3.4 希臘地區.................... 37
3.5 比較與探討................... 43
第四章 結論..................... 48
參考文獻....................... 49
附錄 圖表...................... 53
參考文獻 [1] Anderson, H. and Webb, T. (1994), “New Zealand Seismicity:
Patterns Revealed by the Upgraded National Seismograph
Network,” New Zealand Journal of Geology and Geophysics, 37,
477-493.
[2] Carter, J. A. and Berg, E. (1981), “Relative Stress Variation as
Determined by b-Values From Earthquakes in Circum-Pacific
Subduction Zones,” Tectonophysics, 76, 257-271.
[3] Drakatos, G. (2000), “Relative Seismic Quiescence Before Large
Aftershocks,” Pure and Applied Geophysics, 157, 1407-1421.
[4] Drakatos, G., and Latoussakis, J. (1996), “Some Features of
Aftershock Patterns in Greece,” Geophysical Journal International,
126, 123-134.
[5] Eberhart-Phillips, D. (1998), “Aftershock Sequence Parameters in
New Zealand,” Bulletin of the Seismological Society of America, 88,
4, 1095-1097.
[6] Guo, Z., and Ogata, Y. (1997), “Statistical Relations Between the
Parameters of Aftershocks in Time, Space, and Magnitude,” Journal
of Geophysical Research, 102, B2, 2857-2873.
[7] Kagan, Y. and Knopoff, L. (1978), “Statistical Study of the
Occurrence of Shallow Earthquakes,” Geophysical Journal of the
Royal Astronomical Society, 55, 67-86.
[8] Kisslinger, C. (1995), “Aftershocks and Fault-Zone Properties,”
Advances in Geophysics, 38, 1-36.
[9] Kisslinger, C., and Jones, L. M. (1991), “Properties of Aftershock
Sequences in Southern California,” Journal of Geophysical
Research, 96, B7, 11,947-11,958.
最大餘震發生時間之統計分析 參考文獻
50
[10] Latoussakis, J., and Drakatos, G. (1994), “A Quantitative Study of
Some Aftershock Sequences in Greece,” Pure and Applied
Geophysics, 143, 4, 603-616.
[11] Latoussakis, J., Stavrakakis, G., Drakopoulos, J., Papanastassiou, D.,
and Drakatos, G. (1991), “Temporal Characteristics of Some
Earthquake Sequences in Greece, ” Tectonophysics, 193, 299-310.
[12] Ogata, Y. (1983), “Estimation of the Parameters in the Modified
Omori Formula for Aftershock Frequencies by the Maximum
Likelihood Procedure,” Journal of Physics of the earth, 31, 115-124.
[13] Ogata, Y. (1988), “Statistical Models for Earthquake Occurrences
and Residual Analysis for Point Processes,” Journal of the American
Statistical Association, 83, 401, 9-27.
[14] Ogata, Y. (1999), “Seismicity Analysis Through Point-Process
Modeling: A Review,” Pure and Applied Geophysics, 155, 471-507.
[15] Ogata, Y., and Shimazaki, K. (1984), “Transition From Aftershock to
Normal Activity: The 1965 Rat Islands Earthquake Aftershock
Sequence,” Bulletin of the Seismological Society of America, 74, 5,
1757-1765.
[16] Olsson, R. (1999), “An Estimation of the Maximum b-Value in the
Gutenberg-Richter Relation,” Geodynamics, 27, 547-552.
[17] Page, R. (1968), “Aftershocks and Microaftershocks of the Great
Alaska Earthquake of 1964,” Bulletin of the Seismological Society of
America, 58, 3, 1131-1168.
[18] Rabinowitz, N., and Steinberg, D. M. (1998), “Aftershock Decay of
Three Recent Strong Earthquakes in the Levant,” Bulletin of the
Seismological Society of America, 88, 6, 1580-1587.
[19] Reasenberg, P. A., and Jones, L. M. (1989), “Earthquake Hazard
After a Mainshock in California,” Science, 243, 1173-1176.
最大餘震發生時間之統計分析 參考文獻
51
[20] Reasenberg, P. A., and Jones, L. M. (1990), “California Aftershock
Hazard Forecasts,” Science, 247, 345-346.
[21] Reasenberg, P. A., and Jones, L. M. (1994), “Earthquake Aftershocks:
Update,” Science, 265, 1251-1252.
[22] Reasenberg, P. A., and Matthews, M. V. (1990), “California
Aftershock Model Uncertainties,” Science, 247, 343-345.
[23] Tsapanos, T. M. (1992), “Considerations on the Global Seismic
Sequences: the Second and the Third Largest Aftershocks,”
Geophysical Journal International, 111, 630-636.
[24] Tsapanos, T. M., Karakaisis, G. F., Hatzidimitriou, P. M., and
Scordilis, E. M. (1988), “On the Probability of the Time of
Occurrence of the Largest Aftershock and of the Largest Foreshock
in a Seismic Sequence,” Tectonophysics, 149, 117-180.
[25] Utsu, T. (1961), “A Statistical Study on the Occurrence of
Aftershocks,” The Geophysical Magazine, 30, 4, 521-605.
[26] Utsu, T. (1969), “Aftershocks and Earthquake Statistics (E) —Some
Parameters Which Characterize an Aftershock Sequence and Their
Interrelation,” Journal of the Faculty of Science, Hokkaido
University, Ser. VEE, 3, 3, 129-195.
[27] Utsu, T. (1970), “Aftershocks and Earthquake Statistics(EE)—Further
Investigation of Aftershocks and Other Earthquake Sequences Based
on a New Classification of Earthquake Sequences,” Journal of the
Faculty of Science, Hokkaido University, Ser. VEE (Geophysics), 3, 4,
197-266.
[28] Vere-Jones, D. (1995), “Forecasting Earthquakes and Earthquake
Risk,” International Journal of Forecasting, 11, 503-538.
[29] Wiemer, S., and Katsumata, K. (1999), “Spatial Variability of
Seismicity Parameters in Aftershock Zones,” Journal of Geophysical
Research, 104, B6, 13,135-13,151.
最大餘震發生時間之統計分析 參考文獻
52
[30] 何佳珣(2000):花蓮地區地震資料之長時期相關性及時間—空
間模型之可行性,國立中央大學統計研究所碩士論文。
[31] 林志勳(1999):花蓮地區地震資料之經驗貝氏分析,國立中央
大學統計研究所碩士論文。
[32] 陳韋辰(2000):花蓮地區地震資料改變點之貝氏模型選擇,國
立中央大學統計研究所碩士論文。
[33] 盧裕鵬(2000):集集餘震之統計研究,國立中央大學統計研究
所碩士論文。
指導教授 陳玉英(Yuh-Ing Chen) 審核日期 2001-6-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明