博碩士論文 88321009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:54.174.43.27
姓名 盧明憲( Ming-Shane Lu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液
(Synthesis of Nanosized TiO2 Coating Solution from Titanium Tetrachloride)
相關論文
★ 水熱法合成細顆粒鈦酸鋇★ 合成均一粒徑球形二氧化鈦
★ 共沉澱法合成細顆粒鈦酸鋇★ 中孔型沸石的晶體形狀之研究
★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定
★ 汽機車尾氣在富氧條件下NOx之去除★ 耐高溫燃燒觸媒的配製及鑑定
★ 高效率醋酸乙酯生產製程研究★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究
★ Au/FexOy 奈米材料之製備 及CO 氧化的應用★ 非晶態奈米鐵之製備與催化性質研究
★ 奈米含銀二氧化鈦光觸媒之製備與應用★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究
★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用★ 非晶態奈米鎳的製備及其在對氯硝基苯氫化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 二氧化鈦薄膜是一具有高折射率、高介電常數、在可見光及近紅外光區不吸收、化學性質穩定、硬度高耐磨等優良特性的薄膜材質,其可以廣泛應用在光催化、及其他導電性介電材料的批覆。本論文係應用無機鹽類製備出高濃度二氧化鈦微結晶粒子覆膜液,並批覆在不具親水性的基體上,使其具有高度的親水性,而達到去漬、自潔的功用。首先將系統控制在5℃,配製0.5M的TiCl4 水溶液,再將NaOH溶液,滴入TiCl4 水溶液中調整pH值範圍,經過老化、水洗過濾,再加入不同濃度或莫耳比[H+]/[Ti]的HCl,經過24~48小時的酸解解膠,可以得到穩定的TiO2懸浮液。再將所得的TiO2懸浮液以一定比例加入HPC (150-400 cps)當作粒子分散劑,我們可以得到10 %的TiO2懸浮液。
由XRD、DLS、TEM、氮吸附觀察得知,結晶粒子屬於anatase晶形,而其一次粒子為長軸20 nm,短軸5 nm的菱形粒子;且其具有高表面積141 cm3/g的微孔結構。最後測量批覆7 %TiO2薄膜的玻片基材的接觸角,證明本實驗所製備出的TiO2微結晶懸浮液僅需三次鍍膜便可完整批覆在基材表面,並使基材達到超親水性的性質。
摘要(英) TiO2 has been used as a coating material because of its excellent UV light-scattering effect, high refractive index, and chemical stability, even in acidic or basic environment. TiO2 in anatase phase for applications in optical or electronic devices has generally been adopted in the form of a thin film. The aim of this study was to prepare suspended titanium dioxide solution with high concentration. Titanium tetrachloride was used as a precursor. It was slowly added to the distilled water at 5 ℃. Aqueous solution of sodium hydroxide was added to adjust the pH of the system to 8-12. After aging for a period of time, the peptizate sol was filtered and sufficiently washed. The filtered cake was repulped in water. Hydrochloric acid was slowly added to the solution with stirring. After condensation reaction and crystallization, a transparent suspended TiO2 solution was formed. XRD results show that the crystalline phase was anatase. The suspended TiO2 particles were rhombus primary particles with the major axis ca. 20 nm and the minor axis ca. 5 nm. The sample prepared at pH 8 has the largest surface area of 141 cm3/g, and it was microporous. The compositions of the solution which has the smallest suspended TiO2 particles are TiO2: HCl (35 % HCl)= 1: 1 (molar ratio), concentration of TiO2 = 10 % and HPC with viscosity of 150-400 cps was added as a surfactant. The transparent thin film substrates could be obtained through dip-coating the glass in TiO2 coating solution. The dip-coating on glass can be less than three times to have one monolayer TiO2. The transparent TiO2 thin film has super-hydrophilicity after being illuminated by UV light.
關鍵字(中) ★ 介電材料
★ 超親水性
★ 四氯化鈦
★ 銳鈦礦
★ 光催化
★ 二氧化鈦
關鍵字(英) ★ TiCl4
★ anatase
★ catalyst
★ TiO2
★ super-hydrophi
論文目次 List of contentsiii
List of tablesvi
List of figuresvii
Chapter 1 Introduction1
1.1 The prorperties of titanium dioxide1
1.2 Application of titanium dioxide5
Chapter 2 Literature review9
2.1 Synthesis method9
2.2 Literature review11
2.2.1 Inorganic salt as a precursor11
2.1.2 Alkoxide as a precursor14
Chapter 3 Experiment17
3.1 Chemicals17
3.2 Synthesis17
3.3 Characterization19
3.3.1 X-ray diffraction (XRD) 19
3.3.2 N2 sorption 19
3.3.3 Thermogravimetric analysis (TGA)20
3.3.4 Differential scanning calorimetery (DSC) 20
3.3.5 Transmission electron microscopy (TEM) 21
3.3.6 Scanning electron microscopy (SEM)21
3.3.7 Dynamic light scattering (DLS)21
3.3.8 Ultravillet /visible absorption (UV-vis)22
3.3.9 Contact anglemeter22
Chapter 4 Results and Discussion23
4.1 Particle size distribution23
4.1.1 Effects of pH value23
4.1.2 Effects of [H+]/[Ti] ratio24
4.1.3 Effects of HCl concentration29
4.1.4 Effects of stored temperature on particle diameter33
4.2 Stability of suspension36
4.2.1 Effects of condensation reaction36
4.2.2 Effects of HCl concentration39
4.2.3 Effects of stored temperature39
4.2.4 Effects of residual ions39
4.3 Degree of crystallization41
4.3.1 Effects of pH41
4.3.2 Effects of [H+]/[Ti] ratio and HCl Concentration45
4.4 TiO2 solid content 45
4.4.1 Combination of all factors for best condition45
4.4.2 Effects of HPC surfactant47
4.4.3 Other factors48
4.5 Thermal analysis51
4.5.1 TGA51
4.5.2 DSC51
4.6 N2 sorption52
4.7 Best preparing method58
4.8 Ultraviolet / Visible adsorption (UV-vis)60
4.9 Contact angle60
Chapter 5 Conclusion65
Reference67
Appendix71
List of tables
Table 1. X-ray data of TiO23
Table 2. Mean diameter of TiO2 crystallite from XRD results24
Table 3. The particles size distribution of TiO224
Table 4. The results of Wang (2000)38
Table 5. The pH value in the solution38
Table 6. Effects of HCl Concentration45
Table 7. Effects of [H+]/[Ti] ratio47
Table 8. TiO2 Solid Content49
Table 9. Weight loss of TiO2 prepared at different pH value51
Table 10. Summary results59
Table 11. Particles size of the samples59
Table 12. 5 % TiO2 coating solution64
Table 13. 7 % TiO2 coating solution64
List of figures
Figure 1. (A) structure of Rutile; (B) structure of Anatase4
Figure 2. Schematic representation of the possible application
of transparent TiO2 thin film photocatalysts in the
environment8
Figure3. Flow chart illustrating the preparation of transparent
suspended TiO218
Figure 4. XRD spectra of TiO2 prepared at different pH values25
Figure 5. XRD spectra of standard anatase type TiO2 prepared at
pH=8, [H+]/[Ti] = 1, HCl=1M26
Figure 6. SEM image of aggregated TiO2, but still could see
some disperse particle <100 nm 27
Figure 7. TEM image of TiO2 with rhombus form27
Figure 8. TEM image of TiO2 prepared at different pH values (A) pH
=8; (B) pH=9; (C) pH=10; (D) pH=11. (Store temperature
=30℃)28
Figure 9. XRD spectra of TiO2 prepared at different [H+]/[Ti] ratios30
Figure 10.TEM image of TiO2 prepared at pH=8 and [H+]/[Ti] = 131
Figure 11.TEM image of TiO2 prepared at pH=8 and [H+]/[Ti] = 1.532
Figure 12.XRD spectra of TiO2 prepared at different concentration
of HCl (pH =9; [H+]/[Ti] = 1)………………………………34
Figure 13. TEM image of TiO2 prepared at different HCl
Concentration. (A) pH =8, 1M HCl ; (B) pH=8, 2M HCl35
Figure 14. TEM image of TiO2 at different stored temperature. (A)
pH =8, 5℃; (B) pH=8, 30℃37
Figure 15. XRD spectra of TiO2. The crystal type was converted
into rutile crystal phase at different pH value……………..42
Figure 16. XRD 3D graph of TiO2 (A) suspended TiO2 only
has anatase crystal phase; (B) In precipitate
TiO2, anatase crystalline converted into rutile crystalline43
Figure 17. TEM image of TiO2 (A) Opacity; (B) precipitate (C)
The way of TiO2 aggregation was head to head44
Figure 18. TEM image of TiO2 (A) pH= 8 (A1) TEM SAD pattern;
(B) pH= 12 (B1) TEM SAD pattern46
Figure 19. TEM image of TiO2 at different concentration (A) pH
=8, 10%; (B) pH=10, 7 %; (C) pH=10, 10 %50
Figure 20. TGA spectra of TiO2 prepared at pH= 853
Figure 21. TGA spectra of TiO2 prepared at different pH values53
Figure 22. DSC spectra of TiO2 prepared at pH= 8 and pH=1254
Figure 23. (A) TiO2 was calcined at temperature 450℃, pH=8 1M
HCl, [H+/Ti]=1. (B) TiO2 was calcined at temperature
650℃, pH=8 1M HCl, [H+/Ti]=155
Figure 24. N2 sorption isotherm of TiO2 at pH=856
Figure 25. N2 sorption isotherms of TiO2 after calcinations at
various temperature57
Figure 26. The best preparation method58
Figure 27. UV-visible spectra of TiO2 (not calcined) 61
Figure 28. UV-visible spectra of TiO2 ( calcined at 150℃) 61
Figure 29. UV-visible spectra of Degussa P-25 TiO262
參考文獻 Anpo, M., Applications of titanium oxide photocatalysts and unique second-generation TiO2 photocatalysts able to operate under visible light irradiation for the reduction of environment toxins on a global scale, Stud Sci. Catal. 2000, 130, 157-166.
Bischoff, B. L.; Anderson, M.A., Peptization process in the sol-gel preparation of porous anatase(TiO2), Chem. Mater., 1995, 7, 1772-1778.
Clark, R. J. H., Ph.D. Thesis, The chemistry of titanium and vanadium, University college, London (Great Britain), 1968.
Chrysicopoulou, P.; Davazoglou, D.; Trapalis, C.; Kordas G., Optical properties of very thin (<100 nm) sol-gel TiO2 films, Thin Solid Films, 1998, 323, 188-193.
Cheng, H.; Ma J.; Zhao, Z.; Qi, L., Hydrothermal preparation of uniform nanosize rutile and anatase particles, Chem. Mater. 1995, 7, 663-671.
Elfenthal, L.; Klein, E.; Rosendahl, F., Process for the production of a fine particle titanium dioxide, Assignee: Kronos USA, Inc., U. S. Patent 5,215,580, 1993.
Foulger, D. L.; Necini, P. G.; Poeri, S., Preparation of anatase titanium dioxide, Assignee: Tioxide Group Services Limited., U. S. Patent 5,630,995, 1997.
Haddow, A. J., Oxidation of titanium tetrachloride to form titanium dioxide, Assignee: Tioxide Group Services Limited., U. S. Patent 5,599,519, 1997.
Kim, D. H.; Anderson, M. A., Photoelectrocatalytic degradation of formic acid using a porous TiO2 thin-film electrode, Environ. Sci. Technol. 1994, 28, 479-483.
Kostelnik, R. J.; Wen, F. C., High solids anatase TiO2 slurries, Assignee: SCM Chemicals, Inc., U. S. Patent 5,746,819, 1998.
Lange, R. W.; Sowman, H. G., Shaped and fired articles of TiO2 , Assignee: Minnesota Mining and Manufacturing Company, U. S. Patent 4,166,147, 1979.
Li, G. L.; Wang, G. H., Synthesis of nanometer-sized TiO2 particles by a mcroemulsion method, NanoStrustured Materials, 1999, 11, 663-668.
Li, G. L.; Wang, G. H., Synthesis and characterization of rutile TiO2 nanowhiskers, J. Mater. Res., 1999, 14, 3346-3354.
Mailhe-Randolph, C.; Mcevoy, A. J.; Gratzel, M., Influence of precursors on the morphology and performance of TiO2 photoanodes, J. Mater. Sci., 1991, 26, 3305-3308.
Man, H. D.; Lee, B. H.; Kim, S. J.; Jung, C. H.; Lee, J. H.; Park, S., Reparation of ultrafine crystalline TiO2 powders from aqueous TiCl4 solution by precipitation, Japanese J. App. Phy. 1998, 4603-4608.
Oliver, P. M.; Waston, G. W.; Toby, K. E.; Parker, S. C., Atomistic simulation of the surface structure of the TiO2 polymorphs rutile and anatase, J. Mater. Chem., 1997, 7, 563-568.
Park, H. K.; Kim, D. K.; Kim, C. H., Effect of solvent on titania particle formation and morphology in thermal hydrolysis of TiCl4, J. Am. Ceram. Soc., 1997, 80, 743-749.
Park, S. D.; Cho, Y. H.; Kim, W. W.; Kim, S. J., Understanding on homogeneous spontaneous precipitation for monodispersed of TiO2 ultrafine powders with rutile phase around room temperature, J. Solid State Chem, 1999, 146, 230-238.
Sakamoto, M.; Yokkaichi, H. O., Suzuka, S. K.; Yokkaichi, Y. Y., Titania sol, Assignee: Ishihara Sangyo Kaisha, Ltd., U. S. Patent 4,880,703, 1991.
Sato, G.; Arima, Y.; Tanaka, H.; Hiraoka, S., Titanium dioxide sol and process for preparation thereof, Assignee: Catalyst&Chemical Industries, Co., Ltd., U. S. Patent 5,403,513, 1995.
Sopyan, I.; Watanabe; Murasawa; Hashimoto; Fujishima, An efficient TiO2 thin-film photocatalyst: photocatalytic properties in gas-phase acetaldehyde degradation, J. Photo A.,1996, 79-86.
Takahashi, H.; Sakai, A.; Hattori, M., Dendrite or asteriodal titanium dioxide nicro-particles, Assignee: Ishihara Sangyo Kaisha, Ltd., U. S. Patent 5,536,448, 1996.
Tunashima, M.; Muraoka, K.; Yamamoto, K.; Mikami, M.; Sasaki, S., Stable anatase titanium dioxide and process for preparing the same, Assignee: Sakai Chemical Industry Co., Ltd., U. S. Patent 6,113,873, 2000.
Yasumori, A.; Ishizu, K.; Hayashi, S.; Okada, K., Preparation of a TiO2 based multiple layer thin film photocatalyst, J. Mater. Chem., 1998, 8, 2521-2524.
Yoshihisa, O.; Kazuhito, H.; Fujishima, A., Kinetic of photocatalyic reactions under extremely low-intensity UV illumination on titanium dioxide thin film, J.Phys. Chem. A, 1997, 101, 8057-8062.
Zhang, Q.; Gao, L.; Guo, J., Effects of calcinations on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis, Appl. Catal. B: Envi. 2000, 26, 207-215.
Zeng, T. Y.; Qiu, Y.; Chen, L. H.; Song, X., Microstrusture and phase evolution of TiO2 precursors prepared by peptization-hydrolysis method using polycarboxylic acid as peptizing agent, Mater. Chem. Phy., 1998, 56, 163-170.
Zima, T. M.; Karakchiev, L. G.; Lyakhov, N. Z., Syhthesis and physicochemical properties of hydrated titanium dioxide sol, Colloid J., 1998, 4, 471-475.
王怡凱, 曾俊元, 蔡明憲, 溶凝膠在製作電子元件上之應用, 化工, 46, 94-103, 1999.
緒方四郎, 松井義光, 非晶型過氧化鈦之被覆方法, 中華民國專利申號 86111192, 1997.
北村厚, 渡部俊也, 早川信, 以光觸媒使表面成親水性之方法、以
及具有親水性表面之複合材料, 中華民國專利申請號 85115839, 1996.
正木康浩, 高橋克, 氧化鈦系光觸媒與其製造方法, 以及使用方法, 中華民國專利申請號 87109310, 1998.
王升平, 四氯化鈦製作納米二氧化鈦透明結晶膜及其應用, 碩士學位論文, 國立中央大學化學工程研究所, 1999.
指導教授 陳郁文(Yu-Wen Chen) 審核日期 2001-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明