博碩士論文 88321030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:54.81.220.239
姓名 陳惠姿( Hui-Tzu Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 水熱法合成細顆粒鈦酸鋇
(Hydrothermal Synthesis of Barium Titanate Fine Particles)
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 合成均一粒徑球形二氧化鈦
★ 共沉澱法合成細顆粒鈦酸鋇★ 中孔型沸石的晶體形狀之研究
★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定
★ 汽機車尾氣在富氧條件下NOx之去除★ 耐高溫燃燒觸媒的配製及鑑定
★ 高效率醋酸乙酯生產製程研究★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究
★ Au/FexOy 奈米材料之製備 及CO 氧化的應用★ 非晶態奈米鐵之製備與催化性質研究
★ 奈米含銀二氧化鈦光觸媒之製備與應用★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究
★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用★ 非晶態奈米鎳的製備及其在對氯硝基苯氫化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 以水熱法合成細顆粒鈦酸鋇,合成的溫度為75 ℃至180 ℃之間,合成時間為10分鐘至96小時,在強鹼的情況下進行水熱反應,使用的鋇源為氫氧化鋇,本研究是探討幾種不同的鈦源、溫度和時間對合成鈦酸鋇的影響,初步合成的鈦酸鋇粉末以X光繞射(XRD)鑑定結晶性結構,掃瞄式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)鑑定粒子大小及型態,由比表面積估算平均粒子大小。實驗結果顯示,不同的鈦源對鈦酸鋇粒子大小與型態有很大的影響,在120 ℃水熱反應24小時的條件下,以二氧化鈦(銳鈦礦結構,Merck)為鈦源合成出來的鈦酸鋇粒子最大,以二氧化鈦(70 %銳鈦礦和30 %金紅石,Degussa)或氫氧化鈦為鈦源時合成出來的鈦酸鋇粒子大小為0.1 μm,但是由穿透式電子顯微鏡的結果顯示,以氫氧化鈦為鈦源時合成出來的鈦酸鋇粒子與粒子聚集在一起而形成孔洞的結構。除此之外,粒子大小和型態與合成溫度有關,在85 ℃時,粉末的型態是由很小的結晶聚集在一起形成不同大小的團狀物,在180 ℃時,粒子大(大約130 nm)、均一接近單一分散,而延長反應時間,對粒子大小及型態並沒有重大的影響。
摘要(英) Barium titanate fine particles were prepared by hydrothermal synthesis. The synthesis was preformed at temperature between 75 ℃ and 180 ℃ and for 10 min-96 h. The reactions were carried out in a strong alkaline solution. Ba(OH)2‧8H2O was used as the Ba-precursor material. The various Ti-precursors were used to investigate their effects on the properties of BaTiO3. The as-synthesized of BaTiO3 powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen sorption measurement, and differential scanning calorimetry (DSC). XRD showed that the as-synthesized of BaTiO3 powders have the BaTiO3 structure. SEM and TEM showed the particle size and morphology of BaTiO3. The average particle size of BaTiO3 was calculated from BET surface area. The type of precursor has strong influence on the size and the morphology of barium titanate. The particle size of BaTiO3 was the largest when synthesized at 120 ℃ for 24 h by using anataseTiO2 (Merck) precursor. The particle size was about 0.1 μm when using TiO2 (70 % anatase and 30 % rutile, Degussa P25) or Ti(OH)4 as the precursor. The morphology of powder was the porous structure when using Ti(OH)4 Ti-precursor. In addition, the particle size and morphology was dependent on synthesis temperature. At 85 ℃, the morphology of powder was small crystal and agglomerate of clusters. At 180 ℃, the morphology of powder was large (~130 nm), uniform and nearly monodisperse particles. The extending synthesis time has no significant influence on size and morphology.
關鍵字(中) ★ 鈦酸鋇
★ 水熱法
關鍵字(英) ★ Hydrothermal Synthesis
★ Barium Titanate
論文目次 Abstract………………………………………………………………………i
Table of Contents…………………………………………………………ii
List of Tables…………………………………………………………… iv
List of Figures…………………………………………………………… v
CHAPTER 1. INTRODUCTION………………………………………………… 1
CHAPTER 2. LITERATURE REVIEW……………………………………………5
2.1 Barium Titanate Structure and Ferroelectric State……… 5
2.2 Application in Multilayer Ceramic Capacitors (MLCC)…… 7
2.3 Hydrothermal Synthesis……………………………………………7
2.3.1 Ti precursors………………………………………………… 8
2.3.2 Agitation rate……………………………………………… 10
2.3.3 pH effects and additive bases……………………………10
2.3.4 Ba/Ti ratio……………………………………………………12
2.3.5 Solubility…………………………………………………… 13
2.4 Formation Mechanisms…………………………………………… 14
2.5 Nucleation and Growth……………………………………………16
CHAPTER 3. EXPERIMENTAL…………………………………………………18
3.1 Chemicals……………………………………………………………18
3.2 Synthesis Procedure………………………………………………18
3.2.1 Ti-precursors preparation…………………………………18
3.2.2 Synthesis of barium titanate…………………………… 19
3.3 Characterization of BaTiO3 Powders………………………… 19
3.3.1 X-ray diffraction (XRD)……………………………………19
3.3.2 Scanning electron microcopy (SEM)………………………20
3.3.3 Transmission electron microscopy (TEM)……………… 20
3.3.4 Nitrogen adsorption measurement…………………………20
3.3.5 Differential scanning calorimetry (DSC)………………20
CHAPER 4. RESULTS AND DISCUSSION…………………………………… 22
4.1 Ti Precursor……………………………………………………… 22
4.2 Temperature Effect……………………………………………… 24
4.3 Time Effect…………………………………………………………25
4.4 Particle Size and Crystalline Phase…………………………27
4.5 Lattice Defect…………………………………………………… 29
CHAPTER 5. CONCLUSION……………….………………………………… 31
REFERENCE………………………………….……………………………… 32
List of Tables
Table 1. Methods for wet-chemical synthesis of barium titanate
powders………………………………………………………… 37
Table 2. Literature for the aqueous low temperature and
hydrothermal synthesis of BaTiO3 powders………………38
Table 3. Solubility of Ba(OH)2 in water……………………………39
Table 4. The properties of Ti-precursors………………………… 39
Table 5. Summary of the experimental results. The as-
synthesized BaTiO3 powders were characterized
by XRD……………………………………………………………40
Table 5. (continued) Summary of the experimental results.
The as-synthesized BaTiO3 powders were
characterized by XRD…………………………………………41
Table 6. The specific surface area and particle size
of BaTiO3……………………………………………………… 42
Table 7. d-spacing, and FWHM (full-width of the half maximum)
of BaTiO3……………………………………………………… 43
List of Figures
Figure 1. The perovskite structure of BaTiO3…………………… 44
Figure 2. (a) Lattice parameters of BaTiO3 as a function of
temperature. (b) Dielectric constants of BaTiO3
as a function of temperature…………………………… 45
Figure 3. Stability diagram for the Ba-Ti hydrothermal
system………………………………………………………… 46
Figure 4. Stability diagram for the titanium dioxide
precursor………………………………………………………47
Figure 5. (a) Schematic sketch of the in-situ reaction
mechanism.(b) Schematic sketch of the dissolution-
precipitation reaction mechanism……………………… 48
Figure 6. The autoclave for the synthesis of BaTiO3……………49
Figure 7. The process diagram of the as-synthesized
BaTiO3 powders……………………………………………… 50
Figure 8. The XRD spectra of BaTiO3 prepared via hydrothermal
synthesis at (b) 85 ℃, (c) 100 ℃, (d) 120 ℃, (e)
180 ℃ for 24 h by using (a) A-type Ti-precursor
(70 % anatase and 30 % rutile, Degussa)………………51
Figure 9. The XRD spectra of (a) B-type Ti-precursor
(anatase, Merck) (b) BaTiO3 prepared via
hydrothermal synthesis at 85 ℃ for 96 h…………… 52
Figure 10. The XRD spectra of BaTiO3 powder prepared
at 85 ℃ for 24 h by using C-type [Ti(OH)4] Ti-
precursor………………………………………………………53
Figure 11. The XRD spectra of BaTiO3 prepared via hydrothermal
synthesis (a) using D-type {[TiO(H2O2)]-2} Ti-
precursor as Ti source at 100 ℃ for 24 h,
(b) the as-synthesized of BaTiO3 was annealed
at 850 ℃ for 4 h……………………………………………54
Figure 12. The SEM micrographs of BaTiO3 prepared
at 120 ℃ for 24 h by using (a) B-type
Ti-precursor, (b) C-type Ti-precursor,
(c) A-type Ti-precursor……………………………………55
Figure 13. The TEM micrographs of BaTiO3 were synthesized
at 120 ℃ for 24 h by using (a)(b) C-type
Ti-precursor, (c) A-type Ti-precursor…………………56
Figure 14. The SEM micrographs of BaTiO3 were synthesized
at (a) 85 ℃, (b) 120 ℃, (c) 180 ℃ for 24 h
by using A-type Ti-precursor…………………………… 57
Figure 15. The TEM micrographs of BaTiO3 were synthesized
at (a) 85 ℃, (b) 180 ℃ for 24 h by using A-type
Ti-precursor………………………………………………… 58
Figure 16. The SEM micrographs of BaTiO3 were synthesized
at (a) 85 ℃, (b) 120 ℃ for 24 h by using C-type
Ti-precursor………………………………………………… 59
Figure 17. The SEM micrographs of BaTiO3 were synthesize
at 85 ℃ for (a) 24 h, (b) 48 h, (c) 72 h by using
A-type Ti-precursor…………………………………………60
Figure 18. The SEM micrographs of BaTiO3 were synthesized
at 180 ℃ for (a) 24 h, (b) 72 h by using A-type
Ti-precursor………………………………………………… 61
Figure 19. The TEM micrographs of BaTiO3 were synthesized
at 180 ℃ for (a) 24 h, (b) 72 h by using A-type
Ti-precursor………………………………………………… 62
Figure 20. The TEM micrographs of BaTiO3 were synthesized
at 100 ℃ for (a) 24 h, (b) 72 h by using C-type
Ti-precursor………………………………………………… 63
Figure 21. The SEM micrographs of BaTiO3 were synthesized
at 120 ℃ for (a) 24 h, (b) 72 h by using C-type
Ti-precursor………………………………………………… 64
Figure 22. DSC curves of (a) BaTiO3 synthesized at 180 ℃
for 24 h by using A-type Ti-precursor, (b) the
tetragonal phase of commercial BaTiO3 powders………65
Figure 23. (a) Comparison of the present room-temperature
tetragonality with particle size results for
hydrothermal BaTiO3 powder in the literature.
(b) Values of the c/a ratios as a function of
particle size of BaTiO3 powders…………………………66
參考文獻 Abe, I. K., T. M. Aoki, S. H. Rikimaru, S. T. Ito, T. K. Hidaka, and I. K. Segawa, “Process for Producing a Composition Which Includes Perovskite Compounds,” Assigned to Sakai Chemical Industry Co., Ltd., U.S. Patent 4643984 (1987).
Abe, K. and S. Matsumoto, “Processign Issues of Hydrothermal Synthesis of Fine Dielectric Powders,” in Ceramics Transactions, Vol. 22, Ceramic Powder Science IV, Ed. By S. Hirano, G. L. Messing and H. Mausner, Am. Ceram. Soc., Columbus, OH, pp. 15-25 (1991).
Bruno, S. A., D. K. Swanson, and I. Burn, “High Performance Multilayer Capacitor Dielectrics from Chemically Prepared Powders,” J. Am. Ceram. Soc., 76, 1233-1241 (1993).
Begg, B. D., E. R. Vance, and J. Nowotny, “Effect of Particle Size on the Room-Temperature Crystal Structure of Barium Titanate,” J. Am. Ceram. Soc., 77, 3186-3192 (1992)
Chien, A. T., J. S. Speck, F. F. Lange, A. C. Daykin, and C. G. Levi, “Low Temperature/Low Pressure Hydrothermal Synthesis of Barium Titanate: Powder and Heteroepitaxial Thin Films,” J. Mater. Res., 10, 1784-1789 (1995).
Clark, I. J., T. Takeuchi, N. Ohtori, and D. C. Sinclair, “Hydrothermal Synthesis and Characterization of BaTiO3 Fine Powders: Precursors, Polymorphism and Properties,” J. Mater. Chem., 9, 83-91 (1999).
Dutta, P. K., R. Asiaie, S. A. Akbar, and W. Zhu, “Hydrothermal synthesis and Dielectric Properties of Tetragonal BaTiO3,” Chem. Mater., 6, 1542-1548 (1994).
Dutta, P. K., R. Asiaie, S. A. Akbar, and W. Zhu, “Hydrothermal Synthesis and Dielectric Properties of Tetragonal BaTiO3,” Chem. Mater., 6, 1542-1548 (1996).
Eckert, J. O., C. G. Hung-Houston, B. L. Gersten, M. M. Lencka, and R. E. Riman, “Kinetics and Mechanisms of Hydrothermal Synthesis of Barium Titanate”, J. Am. Ceram. Soc., 79, 2929-2939 (1996).
Gotor, F. J., C. Real, M. J. Dianez, and J. M. Criado, “Relationships Between the Texture and Structure of BaTiO3 and Its Tetragonal → Cubic Transition Enthalpy,” J. Solid State Chem., 123, 301-301 (1996).
Hilton, A. D. and R. Forst, “Recent Developments in the Manufacture of Barium Titanate Powders,” Key Eng. Mater., 66?, 145-184 (1992).
Hertl, W., “Kinetics of Barium Titanate Synthesis,” J. Am. Ceram. Soc., 71, 879-883 (1988).
Hennings, D., G. Rosenstein, and H. Schreinemacher, “Hydrothermal Preparation of Barium Titanate from Barium- Titanium Acetate Gel Precursors,” J. Eur. Ceram. Soc., 8, 107-115 (1991).
Hennings, D. and H. Schreinemacher, “Characterization of Hydrothermal Barium Titanate,” J. Eur. Ceram. Soc., 9, 41-46 (1991).
Hench, L. L. and J. K. West, “Principles of Electronic Ceramics,” 1990 by John Wiley & Sons, Inc.
Hu, M. Z.-C., G. A. Miller, E. A. Payzant, and C. J. Rawn, “Homogeneous (Co)precipitation of Inorganic Salts for Synthesis of Monodispersed Barium Titanate Particles,” J. Mater. Sci., 35, 2927-2936 (2000).
Hu, M. Z.-C., V. Kurian, E. A. Payzant, C. J. Rawn, and R. D. Hunt, “Wet-chemical Synthesis of Monodispersed Barium Titanate Particles-hydrothermal Conversion of TiO2 Microspheres to Nanocrystalline BaTiO3,” Powder Technol., 110, 2-14 (2000).
Kajiyoshi, K., N. Ishizawa, and M. Yoshimura, “Preparation of Tetragonal Barium Titanate Thin Film on Titanaium Metal Substrate by Hydrothermal Method,” J. Am. Ceram. Soc., 74, 369-374 (1991).
Kumazawa, H., S. Anne, and E. Soda, “Hydrothermal synthesis of Barium Titanate Fine Particles from Amorphous and Crystalline Titania,” J. Mat. Soc., 30, 4740-4744 (1995).
Kumazawa, H., T. Kagimoto, and A. Kawabata, “Preparation of Barium Titanate Ultrafine Particles from Amorphous Titania by a Hydrothermal Method and Specific Dielectric Constants of Sintered Discs of the Prepared Particles”, J. Mater. Sci., 31, 2599-2602 (1996).
Kenchner, J. A., “The Hydrothermal Synthesis of Barium Titanate Powders: an Investigation of Predominant Process Variables via Experiment Design,” Ph.D Dissertation, The University of Florida (1998).
Kenchner, J. A., “Hydrothermal Process for Making Barium Titanate Powders,” Assigned to Cabot Corporation, U.S. Patent 6129930 (2000).
Kutty, T. R., R. Vivekanandan, and P. Murugaraj, “Precipitation of Rutile and Anatase (TiO2) Fine Powders and Their Conversion to MTiO3 (M=Ba, Sr, Ca) by the Hydrothermal Method,” Mater. Chem. Phys., 19, 533-546 (1988).
Li, X. and W-H. shih., “Size Effects in Barium Titanate Particles and Clusters,” J. Am. Ceram. Soc., 80, 2844-2852 (1997).
Lu, S. W., B. I. Lee, Z. L. Wang, and W. D. Samuels, “Hydrothermal Synthesis and Structure Characterization of BaTiO3 Nanocrystals,” J. Cryst. Growth., 219, 269-276 (2000).
Miller, D. V., “Synthesis and Properties of Nanocomposites,” Ph. D Dissertation, The Pennsylvania State University (1990).
Menashi, J., R. C. Reid, and L. P. Wagner, “Barium Titanate Based Dielectric Compositions,” Assigned to Cabot corporation, U.S. Patent 4832939 (1989).
Moon, J., “Hydrothermal Particle Synthesis of Barium Titanat and Particle Formation Study,” Ph.D Dissertation, The University of Florida (1996).
Pfaff, G., “BaTiO3 Preparation by Reaction of TiO2 with Ba(OH)2,” J. Euro. Ceram. Soc., 8, 35-39 (1991).
Pinceloup, P., C. Courtois, J. Vicens, A. Leriche, and B. Thierry, “Evidence of a Dissolution-Precipitation Mechaism in Hydrothermal Synthesis of Barium Titanate Powders,” J. Eur. Ceram. Soc., 19, 973-977 (1999).
Shi, E-W, C-T Xia, W-Z Zhong, B-G Wang, and C-D Feng, “Crystallographic Properties of Hydrothermal Barium Titanate Crystallites,” J. Am. Ceram. Soc., 80, 1567-1572 (1997).
Uchino, k., E. Sadanaga, and T. Hirose, “Dependence of the Crystal Structure on Particle Size in Barium Titanate,” J. Am. Ceram. Soc., 72, 1555-1558 (1989).
Vivekananda, R., S. Philip, and T. R. N. Kutty, “Hydrothermal Preparation of Ba(Ti,Zr)O3 Fine Powders,” Mat. Res. Bull., 22, 99-108 (1987).
Vivekanandan, R. and T. R. N. Kutty, “Characterization of Barium Titanate Fine Powders Formed from Hydrothermal Crystallization,” Powder Technol., 55, 181-192 (1989).
Venigalla, S., D. J. Clancy, D. V. Miller, J. A. Kerchner, and S. A. Costantine, “Hydrothermal BaTiO3-Based Aqueous Slurries”, Am. Ceram. Soc. Bull., 78, 51-54 (1999).
Wu, M., J. Long, G. Wang, A. Huang, and Y. Luo, “Hydrothermal Synthesis of Tetragonal Barium Titanate from Barium Hydroxide and Titanium Dioxide under Moderate Conditions,” J. Am. Ceram. Soc., 82, 3254-3256 (1999).
Wang, S. P., “Preparation of Nanosized TiO2 Coating Solution from Titanium Tetrachloride,” M.S. Thesis, Dept. Chem. Eng., National Central Univ., Chungli Taiwan (2000).
Wada, S., T. Suzuki, and T. Noma, “Preparation of Barium Titanate Fine Particles by Hydrothermal Method and Their Characterization,” J. Ceram. Soc. Jpn., 103, 1220-1227 (1995).
Wada, S., T. Suzuki, and T. Noma, “ Role of Lattice Defects in the Size Effect of Barium Titanate Fine Particles,” J. Jap. Ceram. Soc., 104, 383-392 (1996).
Wada, S., H. Chikamori, T. Noma, and T. Suzuki, “Hydrothermal Synthesis of Barium Titanate Crystallites Using New Stable Titanium Chelated Complex in Aqueous Solution,” J. Mater. Sci. Lett., 19, 245-247 (2000).
Xia, C-T., E-W. Shi, W-Z. Zhong, and J-K. Guo, “Preparation of BaTiO3 by the Hydrothermal Method,” J. Eur. Ceram. Soc., 15, 1171-1176 (1995).
Xia, C-T., E-W. Shi, W-Z. Zhong, and J-K. Guo, “Hydrothermal Synthesis of BaTiO3 Nano/microcrystals,” J. Cryst. Growth., 166, 961-966 (1996).
Zhu, W., “Characterization of Chemically Synthesized Barium Titanate in the Forms of Powder, Bulk and Thin Film Ceramics,” Ph.D Dissertation, The Ohio State University (1995).
指導教授 陳郁文(Yu-Wen Chen) 審核日期 2001-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明