博碩士論文 88321040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.234.241.200
姓名 林安宏( A-H Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 金濃度對球矩陣構裝銲點剪力強度影響之研究
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 球矩陣式電子封裝中鎳與鉛錫合金及鉛鉍錫合金界面反應之研究
★ Sn-3.5Ag無鉛銲料與BGA墊層反應之研究★ 矽鍺半導體材料與鈷矽鍺化合物間相平衡與擴散之探討
★ 58Bi-42Sn無鉛銲料與球矩陣封裝中Au/Ni/Cu墊層界面反應之研究★ 927℃ Nb-Si-Ge與600℃ Cu-Si-Ge兩三元平衡相圖之研究
★ 以Lactobacillus reuteri菌發酵glycerol生成reuterin做為生物組織材料天然滅菌劑的探討★ 錫銅無鉛銲料與Ni基材界面反應之研究
★ 電遷移效應對錫微結構影響之探討★ 先進半導體封裝技術中之金脆效應及其有效抑制方法
★ SnAgCu無鉛銲料與BGA之Au/Ni墊層反應之研究★ Reuterin的發酵生成與化學合成及其在生物組織材料上的應用
★ 覆晶封裝中電遷移效應導致之銅溶解現象★ 一種兼具低消耗速率及抗氧化作用之銲點墊層材料
★ 覆晶接點與錫電路之電遷移微結構變化模式研究★ 電遷移對銅原子在熔融錫鉛銲料中擴散行為之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文的研究主軸為塑膠球矩陣構裝中銲點金濃度對其剪力強度之影響。塑膠球矩陣構裝基板為目前系統晶片組及繪圖晶片組所使用的構裝基板。本研究中構裝基板之墊層為電鍍0.4 μm Au / 8 μm Ni表面處理的型式,墊層直徑為430 μm ,而錫球銲點的組成為目前業界所使用的63Sn-37Pb( wt.%)。迴銲參數之迴銲頂溫為225℃,而迴銲時間為90秒。本研究藉著銲點剪力強度的量測來評估銲點的可靠度。實驗內容分為兩部分:一為銲點於160℃固態熱處理後之剪力強度量測,錫球銲點於迴銲前的尺寸分別為直徑750 μm 、600 μm 及450 μm ,而迴銲後之銲點中金濃度分別為0.07 wt.%、0.13 wt.%及0.31 wt.%。二為銲點於重複迴銲/熱處理( RA500h160℃RA250h160℃RA250h160℃R )流程中之剪力強度量測,錫球銲點於迴銲前的尺寸分別為直徑600 μm 及450 μm 。此外,亦使用SEM及EPMA針對錫球銲點進行斷裂面及橫截面分析。
銲點於160℃進行固態熱處理,而熱處理時間為0?4318小時不等。三種尺寸的錫球銲點之平均剪力強度皆有隨著固態熱處理時間增加而下降的趨勢,而三種尺寸的錫球銲點之主要差異在於剪力強度驟降的區間完全不相同。直徑750 μm 錫球銲點的平均剪力強度並沒有發生剪力強度驟降,而其平均剪力強度緩緩下降,熱處理2500小時後之平均剪力強度才降至初始平均剪力強度( 897g )的86%。直徑600 μm 錫球銲點平均剪力強度於熱處理48?96小時的區間發生剪力強度驟降,熱處理96小時後之銲點平均剪力強度降至初始平均剪力強度( 895g )的85%。而直徑450 μm 錫球銲點平均剪力強度於熱處理0?24小時的區間發生剪力強度驟降,熱處理24小時後之銲點平均剪力強度降至初始平均剪力強度( 860g )的90%。由此可知,銲點中Au濃度在0.07 wt.%?0.13 wt.%的區間會使其平均剪力強度降幅的趨勢顯著改變,且銲點中Au濃度在0.13 wt.%?0.31 wt.%的區間會使其初始平均剪力強度出現轉折變化。由錫球銲點的墊層部分斷裂面分析結果,發現有Ni墊層、Ni3Sn4晶粒、(AuxNi1-x)Sn4及銲料等斷裂面型態的存在,其中Ni3Sn4晶粒的斷裂面型態為沿晶斷裂模式,而(AuxNi1-x)Sn4的斷裂面型態為片狀之穿晶斷裂模式。由450 μm 錫球銲點的整體斷裂面觀測,發現大多數的斷裂面都是由銲料內部發生斷裂,此乃由於450 μm 銲點的最初剪力作用之橫截面積與墊層之面積接近。然而,600 μm 及750 μm 錫球銲點的墊層部分斷裂面則是發生於Ni墊層、Ni3Sn4晶粒、(AuxNi1-x)Sn4及銲料處,脆性斷裂面出現的機率變大。隨著Ni墊層參與斷裂面的比例增加,其銲點剪力強度有下降的趨勢,而所有銲點中剪力強度最差的斷裂面即由Ni墊層處發生斷裂。由剛迴銲後之橫截面觀測結果,界面處有一層Ni3Sn4( 2?3 μm )。由固態熱處理1500小時後之橫截面觀測結果,(AuxNi1-x)Sn4三元化合物會回到界面處,其x值約為0.34?0.37。此外,銲點中Au濃度的確為(AuxNi1-x)Sn4三元化合物回到界面處的驅動力,且銲料中的微結構粗化,這也是使其銲點平均剪力強度變弱的原因之一。
由直徑600 μm 及450 μm 錫球銲點於重複迴銲/熱處理流程中剪力強度之變化情形,我們可確立再次的迴銲程序的確可使之前固態熱處理所失去的銲點剪力強度予以強化,而其強化的程度無法使其立即回升至初始平均剪力強度,但經過數次的迴銲及固態熱處理程序後的確可以使其平均剪力強度回升至剛迴銲完後的初始平均剪力強度,甚至高於初始平均剪力強度。
摘要(英) The focus of the research work in this thesis was to think of the effect of gold concentration on shear strength of solder joints in the PBGA packaging. The PBGA substrates are used in core logic chipsets and graphic chipsets at present. The contact pads for solder balls on the PBGA substrates used in this study have the 0.4μm-Au / 8μm-Ni surface finish by electroplating. The diameter of the pads is 430 μm . The composition of the solder joints is 63Sn-37Pb ( wt.%) used in the present electronic industry. For the reflow, the peak reflow temperature was 225℃, and the reflow time was 90 s. The research was to evaluate the reliability of the solder joints by measuring the shear strength of the solder joints on the PBGA substrates. The experiment was divided into two parts. The first part was the measurement of shear strength for solder joints aged at 160℃. The sizes of these solder joints before reflow are 750 μm ﹐600 μm ﹐and 450 μm in diameter, respectively. Therefore, the gold concentration for three kinds of solder joints is 0.07 wt.%﹐0.13 wt.%﹐and 0.31 wt.% respectively. The second part was the measurement of shear strength for solder joints during the process of RA500h160℃RA250h160℃RA250h160℃R. The sizes of these solder joints before reflow are 600 μm and 450 μm in diameter. Besides, we analyzed the fracture surface and cross-section view by SEM and EPMA.
After aging at 160℃ for 0 to 4318 hours, the shear strength for the three kinds of solder joints decreased. Among the three kinds of solder joints, the major difference was the aging time at which a sharp decrease in shear strength occurred. The sharply decreasing shear strength for 750-μm solder joints did not occur after a long term aging at 160℃. The average shear strength decreased slightly right after aging at 160℃. After 2500 hrs of aging at 160℃, the average shear strength decreased to 86% of the initial average shear strength ( 897g ). The aging time of sharply decreasing shear strength for 600-μm solder joints was from 48 to 96 hours. After 96 hrs of aging at 160℃, the average shear strength decreased to 85% of the initial average shear strength ( 895g ). However, the aging time of sharply decreasing shear strength for 450-μm solder joints was from 0 to 24 hours. After 24 hrs of aging at 160℃, the average shear strength decreased to 90% of the initial average shear strength ( 860g ). To sum up, the gold concentration between 0.07 wt.% and 0.13 wt.% would make the decreasing trend of the average shear strength change sharply. In addition, the gold concentration between 0.13 wt.% and 0.31 wt.% would make the initial average shear strength as a turning point. From the analytical results of the fracture surface, Ni, Ni3Sn4, (AuxNi1-x)Sn4, and solder existed in the fracture surface on the pad side. The fracture model of Ni3Sn4 was intergranular. But, the fracture model of (AuxNi1-x)Sn4 was transgranular. From the overall view of the fracture surface for 450-μm solder joints, the major fracture surface occurred inside the solder. This was because the cross-section area exerted by the initial shear force for 450-μm solder joints was close to the cross-section area of the pads. Nevertheless, the fracture surfaces for 600-μm and 750-μm solder joints occurred at Ni, Ni3Sn4, (AuxNi1-x)Sn4, and solder. There was a good possibility that the brittle fracture surface occurred. The proportion of Ni on the fracture surface increased, the shear strength of solder joints had the decreasing trend. Among the solder joints, the fracture surface on which the poorest shear strength occurred was made of Ni. The cross-section view right after reflow showed a thin layer Ni3Sn4 ( 2?3 μm ) at the interface. From the analytical results of the cross-section view aged at 160℃ for 1500 hours, (AuxNi1-x)Sn4 would relocate from inside the solder joints to the interface, and the value of x for (AuxNi1-x)Sn4 at the interface was about 0.34 to 0.37. Moreover, the gold concentration inside the solder joints was the driving force for (AuxNi1-x)Sn4 to come back to the interface. The microstructure of solder coarsened, and this was one cause of the weak average shear strength for solder joints.
During the process of RA500h160℃RA250h160℃RA250h160℃R, we assured that further reflow could strengthen the average shear strength of solder joints lost by aging at 160℃. But, the degree of strengthening would not at once make the average shear strength regain the initial average shear strength. However, after several reflow and aging cycles, the average shear strength could indeed come back to the initial value, and even be higher than the initial value.
關鍵字(中) ★ 覆晶技術
★ 系統晶片組
★ 剪力強度
★ 金濃度
★ 鉛錫共晶銲點
★ 球矩陣構裝
★ 可靠度
關鍵字(英) ★ Eutectic Pb-Sn Solder J
★ Ball Grid Array Packages
論文目次 The focus of the research work in this thesis was to think of the effect of gold concentration on shear strength of solder joints in the PBGA packaging. The PBGA substrates are used in core logic chipsets and graphic chipsets at present. The contact pads for solder balls on the PBGA substrates used in this study have the 0.4μm-Au / 8μm-Ni surface finish by electroplating. The diameter of the pads is 430 μm . The composition of the solder joints is 63Sn-37Pb ( wt.%) used in the present electronic industry. For the reflow, the peak reflow temperature was 225℃, and the reflow time was 90 s. The research was to evaluate the reliability of the solder joints by measuring the shear strength of the solder joints on the PBGA substrates. The experiment was divided into two parts. The first part was the measurement of shear strength for solder joints aged at 160℃. The sizes of these solder joints before reflow are 750 μm ﹐600 μm ﹐and 450 μm in diameter, respectively. Therefore, the gold concentration for three kinds of solder joints is 0.07 wt.%﹐0.13 wt.%﹐and 0.31 wt.% respectively. The second part was the measurement of shear strength for solder joints during the process of RA500h160℃RA250h160℃RA250h160℃R. The sizes of these solder joints before reflow are 600 μm and 450 μm in diameter. Besides, we analyzed the fracture surface and cross-section view by SEM and EPMA.
After aging at 160℃ for 0 to 4318 hours, the shear strength for the three kinds of solder joints decreased. Among the three kinds of solder joints, the major difference was the aging time at which a sharp decrease in shear strength occurred. The sharply decreasing shear strength for 750-μm solder joints did not occur after a long term aging at 160℃. The average shear strength decreased slightly right after aging at 160℃. After 2500 hrs of aging at 160℃, the average shear strength decreased to 86% of the initial average shear strength ( 897g ). The aging time of sharply decreasing shear strength for 600-μm solder joints was from 48 to 96 hours. After 96 hrs of aging at 160℃, the average shear strength decreased to 85% of the initial average shear strength ( 895g ). However, the aging time of sharply decreasing shear strength for 450-μm solder joints was from 0 to 24 hours. After 24 hrs of aging at 160℃, the average shear strength decreased to 90% of the initial average shear strength ( 860g ). To sum up, the gold concentration between 0.07 wt.% and 0.13 wt.% would make the decreasing trend of the average shear strength change sharply. In addition, the gold concentration between 0.13 wt.% and 0.31 wt.% would make the initial average shear strength as a turning point. From the analytical results of the fracture surface, Ni, Ni3Sn4, (AuxNi1-x)Sn4, and solder existed in the fracture surface on the pad side. The fracture model of Ni3Sn4 was intergranular. But, the fracture model of (AuxNi1-x)Sn4 was transgranular. From the overall view of the fracture surface for 450-μm solder joints, the major fracture surface occurred inside the solder. This was because the cross-section area exerted by the initial shear force for 450-μm solder joints was close to the cross-section area of the pads. Nevertheless, the fracture surfaces for 600-μm and 750-μm solder joints occurred at Ni, Ni3Sn4, (AuxNi1-x)Sn4, and solder. There was a good possibility that the brittle fracture surface occurred. The proportion of Ni on the fracture surface increased, the shear strength of solder joints had the decreasing trend. Among the solder joints, the fracture surface on which the poorest shear strength occurred was made of Ni. The cross-section view right after reflow showed a thin layer Ni3Sn4 ( 2?3 μm ) at the interface. From the analytical results of the cross-section view aged at 160℃ for 1500 hours, (AuxNi1-x)Sn4 would relocate from inside the solder joints to the interface, and the value of x for (AuxNi1-x)Sn4 at the interface was about 0.34 to 0.37. Moreover, the gold concentration inside the solder joints was the driving force for (AuxNi1-x)Sn4 to come back to the interface. The microstructure of solder coarsened, and this was one cause of the weak average shear strength for solder joints.
During the process of RA500h160℃RA250h160℃RA250h160℃R, we assured that further reflow could strengthen the average shear strength of solder joints lost by aging at 160℃. But, the degree of strengthening would not at once make the average shear strength regain the initial average shear strength. However, after several reflow and aging cycles, the average shear strength could indeed come back to the initial value, and even be higher than the initial value.
[ 論文目次 ]
目 錄
頁數
中文摘要 I
英文摘要 III
目 錄 Ⅵ
圖 目 錄 IX
表 目 錄 XXI
第 一 章 緒論
1.1 研究背景 1
1.1.1台灣半導體產業 1
1.1.2微電子構裝 14
1.1.3銲接 29
1.1.4銲料 34
1.2 研究目的 39
第 二 章 文獻回顧及實驗規劃
2.1 PBGA基板及印刷電路板墊層的表面處理方式對於可靠度之影響 47
2.2 PBGA基板與印刷電路板間銲點接合之環境狀態對於可靠度之影響 51
2.3 墊層及錫球幾何參數對於銲點可靠度之影響 54
2.4 產品可靠度分析流程 61
2.5 Au/Ni墊層表面處理之球矩陣構裝銲點之文獻回顧 67
2.6 實驗規劃 70
第 三 章 實驗方法及步驟
3.1 PBGA基板與不同大小Sn-37Pb錫球於160℃固態熱處理後之錫球銲點 剪力強度 72
3.1.1 PBGA基板與Sn-37Pb錫球迴銲接合樣品的製備 73
3.1.2迴銲後,PBGA基板進行160℃固態熱處理 77
3.1.3 PBGA基板之銲點剪力強度量測 77
3.1.4 Sn-37Pb錫球與PBGA基板的橫截面、斷裂面之微結構及相組成分析 82
3.2 PBGA基板與直徑600 μm 及450 μm Sn-37Pb錫球於重複迴銲/熱處理過程中之錫球銲點剪力強度 85
第 四 章 PBGA基板與不同大小Sn-37Pb錫球於160℃固態熱處理後之錫球銲點分析結果
4.1 PBGA基板於160℃固態熱處理後之錫球銲點剪力強度 87
4.1.1直徑750 μm 錫球銲點剪力強度之量測 87
4.1.2直徑600 μm 錫球銲點剪力強度之量測 92
4.1.3直徑450 μm 錫球銲點剪力強度之量測 97
4.2 PBGA基板上墊層部分及錫球部分之斷裂面分析 103
4.2.1直徑750 μm 錫球銲點之斷裂面觀察 103
4.2.2直徑600 μm 錫球銲點之斷裂面觀察 135
4.2.3直徑450 μm 錫球銲點之斷裂面觀察 154
4.3 直徑750 μm 、600 μm 及450 μm 錫球銲點之橫截面觀察 161
4.4 EPMA之Color Mapping分析 168
第 五 章 PBGA基板與直徑600 μm 及450 μm Sn-37Pb錫球於重複迴銲/熱處理過程中之錫球銲點分析結果
5.1 PBGA基板銲點於重複迴銲/熱處理過程中錫球銲點剪力強度之變化 183
5.1.1直徑600 μm 錫球銲點剪力強度之量測 183
5.1.2直徑450 μm 錫球銲點剪力強度之量測 186
5.2 PBGA基板上墊層部分之斷裂面分析 189
5.2.1直徑600 μm 錫球銲點之斷裂面觀察 189
5.2.2直徑450 μm 錫球銲點之斷裂面觀察 200
5.3 直徑600 μm 及450 μm 錫球銲點之橫截面觀察 210
第 六 章 討論
6.1 160℃固態熱處理後,Au濃度對於PBGA基板上錫球銲點剪力強度影響之探討 218
6.2 直徑600 μm 及450 μm 錫球銲點於重複迴銲/熱處理過程中剪力強度變化之探討 225
第 七 章 結論
7.1 160℃固態熱處理後,Au濃度對於PBGA基板上錫球銲點剪力強度之影響 228
7.2 直徑600 μm 及450 μm 錫球銲點於重複迴銲/熱處理過程中剪力強度之變化 232
參考文獻 233
參考文獻 [BAN]K. Banerji, R. F. Darveaux, P. K. Liaw, R. Viswanathan, K. L. Murty, E. P. Simonen, and D. Frear, Microstructures and Mechanical Properties of Aging Materials, TMS, Warrendale, Pa., p.431, 1993.
[BLA]H. D. Blair, T. Y. Pan, and J. M. Nicholson, Proc. 48th IEEE Electron. Comp. Tech. Conf., p.259, 1998.
[BLO]A. J. Blodgett and D. R. Barbour, IBM J. Res. Develop., 26, p.30, 1983.
[BRA]E. Bradley and K. Banerji, Proc. 45th IEEE Electron. Comp. Tech. Conf., p.1028, 1995.
[DAV]E. M. Davis, W. E. Harding, R. S. Schwartz and J. J. Corning, IBM J. Res. Develop., 8, p.102, 1964.
[EAK]W. Eakin, K. Gardiner, and J. Nayak, J. Electron. Manuf., 1, p.13, 1991.
[ERI]R. Erich, R. J. Coyle, G. M. Wenger, A. Primavera, Proc. 24th IEMT, p.16, 1999.
[FER]M. E. Ferguson, C. D. Fieselman, and M. A. Elkins, IEEE Trans. on Comp., Pack., and Manufact. Tech. C, 20, p.188, 1997.
[GLA]J. Glazer, Inter. Mater. Rev., 40, p.65, 1995.
[HO1]C. E. Ho, Y. M. Chen, and C. R. Kao, J. Electron. Mater., 28, p.1231, 1999.
[HO2]C. E. Ho, R. Zheng, G. L. Luo, A. H. Lin, and C. R. Kao, J. of Electron. Mater., 29, p.1175, 2000.
[HO3]C. E. Ho, G. L. Luo, A. H. Lin, and C. R. Kao, “Reaction of solder with Ni/Au metallization for electronic packages during reflow soldering,“ submitted to IEEE Transactions on Advanced Packaging.
[HO4]C. E. Ho, W. T. Chen, R. Y. Tsai, and C. R. Kao, “Metallurgical reaction in advanced microelectronic packages,“ submitted to Solid-State Electronics.
[HUN]S. C. Hung, P. J. Zheng, S. C. Lee, Proc. 24th IEMT, p.23, 1999.
[HWA]J. S. Hwang, Modern Solder Technology for Competitive Electronics Manufacturing, McGraw Hill, Inc., NY, p.387, 1996.
[IPC]IPC Roadmap for Lead-Free Electronics Assemblies, 2nd draft, IPC, Northbrook, IL, November, 1999.
[KAN]S. K. Kang and V. Ramachandran, Scripta Metall., 14, p.421, 1980.
[KAO]C. R. Kao, Mater. Sci. & Eng. A, 238, p.196, 1997.
[KRA]P. A. Kramer, J. Glazer, and J. W. Morris, Jr., Metall. And Mater. Trans., 25A, p.1249, 1994.
[LAU]J. J. Lau, H. Berg, Y. —T. Wen, S. Mulgaonker, R. Bowlby and A. Mawer, Mat. Chem. and Phys., 40, p.236, 1995.
[LEE1]S. H. —K. Lee, N. Fan, J. S. Wu, L. Weng, W. W. M. Siu, N. Mclellan, and, M. Papageorge, National Electronic Packaging and Production Conference-Proceedings of the Technical Program (West and East), 2, p.1153, 1999.
[LEE2]M. S. Lee, C. M. Liu, and C. R. Kao, J. Electron. Mater., 28, p.57, 1999.
[MEI1]Z. Mei, M. Kaufmann, A. Eslambolchi, and P. Johnson, Proc. 48th IEEE Electron. Comp. Tech. Conf., p.952, 1998.
[MEI2]Z. Mei, P. Johnson, M. Kaufmann, and A. Eslambolchi, Proc. 49th IEEE Electron. Comp. Tech. Conf., p.125, 1999.
[MIN1]A. M. Minor and J. W. Morris, Jr., Metall. and Mater. Trans., A31, p.798, 2000.
[MIN2]A. M. Minor and J. W. Morris, Jr., J. Electron. Mater., 29, p.1170, 2000.
[MIY]T. Miyazaki and K. Terashima, Proc. 19th IEMT, p.333, 1994.
[NAT]National Semiconductor Application Note 1126, National Semiconductor Corp., p.1, September, 1999.
[NCM]Lead-Free Solder Project Final Report, NCMS Report 0401RE96, National Center for Manufacturing Sciences, 3025 Boardwalk, Ann Arbor, Michigan, 1997.
[SEN]Senate Bills S.729 and S.2637 by Senator Reid;House Bills H.2479 and H.2922 by Representative Cardin.
[SON]H. G. Song, J. P. Ahn. A. M. Minor, and J. W. Morris, Jr., J. Electron. Mater., 30, p.409, 2001.
[TRI]W. T. Triggs and C. J. Byrns, Jr., U.S. Pat. 3,599,060, August 19, 1971.
[WAR]W. K. Warburton and D. Turnbull, Diffusion in Solids-Recent Developments, ed. A. S. Nowick and J. J. Burton, Academic Press, NY, p.171, 1975.
[WU]Y. P. Wu, Y. C. Chan, and J. K. L. Lai, Proc. 48th IEEE Electron. Comp. Tech. Conf., p.292, 1998.
[YAM]S. Yamamoto, ESPEC Technology Report No. 9, Tabai ESPEC Corp., Osaka, Japan, p.7, 2000.
[ZRI]A. Zribi, R. R. Chromik, R. Presthus, J. Clum, K. Teed, L. Zavalij, J. DeVita, J. Tova, and E. J. Cotts, Proc. 49th IEEE Electron. Comp. Tech. Conf., p. 451, 1999.
[李柏毅]李柏毅著『半導體趨勢圖示』,電子時報,p.268,2000。
[黃家緯]黃家緯碩士論文,成功大學材料科學及工程研究所,2000。
[謝宗雍]謝宗雍、陳力俊著『微電子材料與製程』,中國材料科學學會,p.385,2000。
[江米珮]江米珮,“構裝IC產品專題研究-經濟部產業科技資料服務專案計畫”,工研院電子所,1994。
[陳琪]陳琪碩士論文,中央大學化學工程研究所,1999。
[陳慶宗]陳慶宗,工業材料,第96期,p.67,1983。
[葉宗壽]葉宗壽、資重興,工業材料,第121期,p.51,1997。
[賴玄金]賴玄金,電子與材料,第8期,p.111,2000。
[謝國華]謝國華,電子與材料,第8期,p.57,2000。
[劉漢誠]劉漢誠著『球腳格狀陣列封裝技術』,鴻海精密工業股份有限公司,p.253,1997。
[劉家明]劉家明碩士論文,中央大學化學工程研究所,2000。
指導教授 高振宏(C. Robert Kao) 審核日期 2001-6-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明