博碩士論文 972411006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:54.81.220.239
姓名 鍾豐翔( Feng-Hsiang Chung)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 一種找尋再利用藥物複合物來系統性治療複雜疾病的架構:大腸直腸腺瘤的應用
(A Framework for Searching for Repurposed Drug Compounds for Systems Treatment of Complex Diseases: An Application to Colorectal Adenocarcinoma)
相關論文
★ 人類陰道滴蟲之Myb2蛋白質動態性質研究★ 分析原核生物基因體複製起點與終點的反向對偶對稱現象
★ 分析基因體拷貝數變異所使用的兩種方法比較:隱藏馬可夫模型與成對高斯合併法★ 使用兩種方法偵測基因體拷貝數變異:成對高斯合併法與隱藏馬可夫模型
★ 以整體晶片數據為母體應用於分析基因差異表達的z檢定方法★ GSLHC - 運用基因組及層次類聚以生物功能群將有生物活性的複合物定性的方法
★ 一個檢定測量微晶片基因表達數據靈敏度的全統計計算法★ 運用嶄新抗體固著策略發展及驗證新式抗體微晶片平台
★ Drug-resistant colon cancer cells produce high carcinoembryonic antigen and might not be cancer-initiating cells★ 創傷性關節炎軟骨之退化進程- 大鼠模型基因體圖譜研究
★ 運用時間序列微陣列資料來預測調控基因★ 以大鼠嗜鉻性瘤細胞株建立神經訊號傳遞之細胞分子生物學模型
★ 以上皮細胞間質化與增生相關功能來描述癌症幹細胞之基因型★ 從共表達差異基因對導出正常腦老化及因阿茲海默症特定腦區導致在功能性基因途徑與樞紐基因子網絡之變化
★ 以疾病進展趨勢挑選基因法識別正常腦老化與阿爾茨海默氏症在特定腦區引發的關鍵功能路徑與調節路徑之變化★ 中國傳統醫藥蒙古黃耆在HCT116結腸癌細胞體外和體內實驗呈現腫瘤抑制作用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於新藥開發上日益增加的成本,與成功上市的藥物因副作用的問題而頻繁地被撤銷,在藥物發展上,找尋舊藥再利用已經成為一項越來越具吸引力的策略。癌症現在已被認為是一種系統性的疾病,是在細胞中整個生物系統的破壞,而非一、兩個基因失常所導致的。因此,人們不能指望癌症被有效地由單一或數個標靶的藥物所治癒。於此,我們設計功能模組連結圖譜 (Functional Module Connectivity Map, FMCM) 來探勘再利用藥物複合物以系統性的方式治療複雜疾病,並應用於大腸直腸腺瘤。FMCM利用多種功能模組來比對連結圖譜 (Connectivity Map, CMap) 。這些功能模組圍繞的樞紐基因,是透過病人的基因表現微陣列晶片中建構特定狀態的基因-基因交互作用網路並利用疾病趨勢進程的程序 (Gene Selection by Trend-of-disease-Progression procedure, GSToP) 所鑑定出來。預測出的藥物必須限制在胞內展現有害副作用最小化的藥物複合物之組成。透過GSToP所篩選出癌症基因的命中率 (~50%) 遠比由eBayes與SAM (~20%) 所獲得的高。我們測試FMCM與以一組獨立基因查詢CMap來選擇藥物的常見做法 (Individual Genes Connectivity Map, IGCM) 做比較,發現FMCM具有較好的穩健性、準確度和再現性來鑑定已知的抗癌藥物。從大腸直腸腺瘤透過FMCM所挑選的46藥物中,65%的藥物有文獻支持具有抗癌活性,且三種藥物被預測對癌症有不良有害反應也曾被報導。在細胞存活測試中,我們驗證出四種候選藥物:GW8510、etacrynic acid、ginkgolide A和6-azathymine,對癌症細胞株有高的抑制能力。透過微陣列晶片實驗,我們驗證了三種候選藥物的新功能聯結:phenoxybenzamin (廣域影響) 、GW-8510 (細胞週期) 、和imipenem (免疫系統) 。我們期望FMCM能廣泛應用於藥物再利用開發來系統性治療其它複雜疾病。
摘要(英) Drug repurposing has become an increasingly attractive approach to drug development owing to the ever-growing cost of new drug discovery and frequent withdrawal of successful drugs caused by side effect issues. Cancer is now recognized as is a systems disease caused by the breakdown of a large part of the cellular system, not just of the failure of one or two genes. Therefore, one cannot expect cancer to be effectively treated by one or a few single-target drugs. Here, we devised Functional Module Connectivity Map (FMCM) for the discovery of repurposed drug compounds for systems treatment of complex diseases, and applied it to colorectal adenocarcinoma. FMCM used multiple functional gene modules to query the Connectivity Map (CMap). The functional modules were built around hub genes identified, through the Gene Selection by Trend-of-disease-Progression (GSToP) procedure, from condition-specific gene-gene interaction networks constructed from sets of cohort gene expression microarrays. The formulated drug compounds were restricted to drugs exhibiting predicted minimal intracellular harmful side effects. Genes selected by GSToP had a much higher cancer gene hit rate (~50%) than that obtained by eBayes and SAM (~20%). We tested FMCM against the common practice of selecting drugs by using a single set of individual genes to query CMap (IGCM), and found that FMCM have higher robustness, accuracy, and reproducibility in identifying known anti-cancer agents. Among the 46 drugs selected by FMCM for colorectal adenocarcinoma, 65% had literature support for association with anti-cancer activities, and three drugs predicted to have adverse harmful effects on cancers had also been reported. In cell viability tests, we validated four candidate drugs: GW-8510, etacrynic acid, ginkgolide A, and 6-azathymine, as having high inhibitory activities against cancer cells. Through microarray experiments we confirmed the novel functional links predicted for three candidate drugs: phenoxybenzamine (broad effects), GW-8510 (cell cycle), and imipenem (immune system). We expect FMCM can be widely applied to repurposed drug discovery for systems treatment of other complex diseases.
關鍵字(中) ★ 大腸直腸癌
★ 疾病趨勢進程
★ 維陣列晶片分析
★ 功能模組連結圖譜
★ 胞內副作用
★ 連結圖
★ 舊藥再利用
★ 腺瘤
★ 腸躁症
關鍵字(英) ★ colorectal cancer
★ Trend of disease Progression
★ microarray analysis
★ Functional Module Connectivity Map
★ intracellular side effect
★ Connectivity map
★ drug repurposing
★ adenoma
★ inflammatory bowel disease
論文目次 Chapter 1 Introduction 1
1-1 Colorectal cancer 1
1-2 Molecular genetics for CRC 2
1-3 Cancer as a systems biology disease 3
1-4 Network-based approaches 5
1-5 Drug repurposing strategies 6
1-6 Cancer biomarker selection 9
1-7 Systems pharmacology on cancer research 10

Chapter 2 Materials and Methods 13
2-1 Samples and microarrays 13
2-2 External databases 14
2-3 Individual gene analysis and individual gene connectivity map 15
2-4 Construction of GGIN and function-function network 16
2-5 GSToP and the functional module connectivity map framework 17
2-6 Hit rate for cancer genes and permutation test 18
2-7 Performance tests on drug prediction 19
2-8 Follow-up experimental validations 20

Chapter 3 Results 23
3-1 Microarray quality and differentially expressed genes 23
3-2 CRC network had highest complexity 24
3-3 Sizes of FFNs generally increased with disease severity 25
3-4 Discovery of cancer genes using the GSToP procedure 26
3-5 Repurposed therapeutic drugs selected by IGCM and FMCM 29
3-6 Comparison between IGCM and FMCM 31
3-7 Follow-up experimental results and test of the perturbagen concept 33

Chapter 4 Summary and discussions 36

References 46
參考文獻 1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, et al. (2011) Global cancer statistics. CA Cancer J Clin 61: 69-90.
2. (2010) 台灣衛生署統計處, 民國100年死因結果摘要表, 表 8. ICD-10全國主要癌症死亡原因, http://www.mohw.gov.tw/cht/DOS/Statistic.aspx?f_list_no=312&fod_list_no=2747.
3. (2010) 台灣衛生署癌症登記中心, 十大癌症年齡標準化發生率長期趨勢, http://cph.ntu.edu.tw/main.php?Page=A5B2.
4. Society AC (2011) Colorectal Cancer Facts & Figures 2011-2013. Atlanta: American Cancer Society.
5. Tsai CJ, Lu DK (1995) Small colorectal polyps: histopathology and clinical significance. Am J Gastroenterol 90: 988-994.
6. Rubin CE, Bronner MP (2003) Endoscopic mucosal biopsy: a memorial to Rodger C. Haggitt, M.D. In: Yamada T, Alpers D, Kaplowitz N, et al, editors. Textbook of gastroenterology. 4th edition. Philadelphia: Lippincott Williams & Wilkins.
7. Morson BC, Dawson IMP (1972) Gastrointestinal pathology. Oxford: Blackwell Scientific.
8. Heald RJ, Bussey HJ (1975) Clinical experiences at St. Mark's Hospital with multiple synchronous cancers of the colon and rectum. Dis Colon Rectum 18: 6-10.
9. Day DW, Morson BC (1978) The adenoma-carcinoma sequence. In: Morson BC, editor. The pathogenesis of colorectal cancer. Philadelphia: WB Saunders. 58–71.
10. Johns LE, Houlston RS (2001) A systematic review and meta-analysis of familial colorectal cancer risk. Am J Gastroenterol 96: 2992-3003.
11. Herrera L, Kakati S, Gibas L, Pietrzak E, Sandberg AA (1986) Gardner syndrome in a man with an interstitial deletion of 5q. Am J Med Genet 25: 473-476.
12. Bodmer WF, Bailey CJ, Bodmer J, Bussey HJ, Ellis A, et al. (1987) Localization of the gene for familial adenomatous polyposis on chromosome 5. Nature 328: 614-616.
13. Leppert M, Burt R, Hughes JP, Samowitz W, Nakamura Y, et al. (1990) Genetic analysis of an inherited predisposition to colon cancer in a family with a variable number of adenomatous polyps. N Engl J Med 322: 904-908.
14. Oving IM, Clevers HC (2002) Molecular causes of colon cancer. Eur J Clin Invest 32: 448-457.
15. Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87: 159-170.
16. Ivanovich JL, Read TE, Ciske DJ, Kodner IJ, Whelan AJ (1999) A practical approach to familial and hereditary colorectal cancer. Am J Med 107: 68-77.
17. Chung DC, Rustgi AK (1995) DNA mismatch repair and cancer. Gastroenterology 109: 1685-1699.
18. Robbins DH, Itzkowitz SH (2002) The molecular and genetic basis of colon cancer. Med Clin North Am 86: 1467-1495.
19. Arnold CN, Goel A, Blum HE, Boland CR (2005) Molecular pathogenesis of colorectal cancer: implications for molecular diagnosis. Cancer 104: 2035-2047.
20. Futreal PA, Coin L, Marshall M, Down T, Hubbard T, et al. (2004) A census of human cancer genes. Nat Rev Cancer 4: 177-183.
21. Rettig RA (2006) The war on cancer: An anatomy of failure, a blueprint for the future. Health Affairs 25: 1446-1447.
22. Kreeger PK, Lauffenburger DA (2010) Cancer systems biology: a network modeling perspective. Carcinogenesis 31: 2-8.
23. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144: 646-674.
24. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100: 57-70.
25. Hornberg JJ, Bruggeman FJ, Westerhoff HV, Lankelma J (2006) Cancer: a Systems Biology disease. Biosystems 83: 81-90.
26. Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4: 682-690.
27. Schadt EE, Friend SH, Shaywitz DA (2009) A network view of disease and compound screening. Nat Rev Drug Discov 8: 286-295.
28. Berger SI, Iyengar R (2009) Network analyses in systems pharmacology. Bioinformatics 25: 2466-2472.
29. Han JD, Bertin N, Hao T, Goldberg DS, Berriz GF, et al. (2004) Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430: 88-93.
30. Zhang S, Jin G, Zhang XS, Chen L (2007) Discovering functions and revealing mechanisms at molecular level from biological networks. Proteomics 7: 2856-2869.
31. Stuart JM, Segal E, Koller D, Kim SK (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302: 249-255.
32. Xiong J, Yuan D, Fillingham JS, Garg J, Lu X, et al. (2011) Gene network landscape of the ciliate Tetrahymena thermophila. PLoS One 6: e20124.
33. Butte AJ, Kohane IS (2000) Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac Symp Biocomput: 418-429.
34. Steuer R, Kurths J, Daub CO, Weise J, Selbig J (2002) The mutual information: detecting and evaluating dependencies between variables. Bioinformatics 18 Suppl 2: S231-240.
35. Ideker T, Ozier O, Schwikowski B, Siegel AF (2002) Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18 Suppl 1: S233-240.
36. Liang S, Fuhrman S, Somogyi R (1998) Reveal, a general reverse engineering algorithm for inference of genetic network architectures. Pac Symp Biocomput: 18-29.
37. D'Haeseleer P, Liang S, Somogyi R (2000) Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16: 707-726.
38. Ekman D, Light S, Bjorklund AK, Elofsson A (2006) What properties characterize the hub proteins of the protein-protein interaction network of Saccharomyces cerevisiae? Genome Biol 7: R45.
39. Lin CC, Hsiang JT, Wu CY, Oyang YJ, Juan HF, et al. (2010) Dynamic functional modules in co-expressed protein interaction networks of dilated cardiomyopathy. BMC Syst Biol 4: 138.
40. Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10: 789-799.
41. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, et al. (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314: 268-274.
42. Lin J, Gan CM, Zhang X, Jones S, Sjoblom T, et al. (2007) A multidimensional analysis of genes mutated in breast and colorectal cancers. Genome Res 17: 1304-1318.
43. Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, et al. (2007) The genomic landscapes of human breast and colorectal cancers. Science 318: 1108-1113.
44. Sleigh SH, Barton CL (2010) Repurposing Strategies for Therapeutics. Pharmaceutical Medicine 24: 151-159 110.2165/11536770-000000000-000000000.
45. Kamb A, Wee S, Lengauer C (2007) Why is cancer drug discovery so difficult? Nat Rev Drug Discov 6: 115-120.
46. Chong CR, Sullivan DJ, Jr. (2007) New uses for old drugs. Nature 448: 645-646.
47. Issa AM, Phillips KA, Van Bebber S, Nidamarthy HG, Lasser KE, et al. (2007) Drug withdrawals in the United States: a systematic review of the evidence and analysis of trends. Curr Drug Saf 2: 177-185.
48. Hill KD, Wee R (2012) Psychotropic Drug-Induced Falls in Older People A Review of Interventions Aimed at Reducing the Problem. Drugs & Aging 29: 15-30.
49. Goldkind L, Laine L (2006) A systematic review of NSAIDs withdrawn from the market due to hepatotoxicity: lessons learned from the bromfenac experience. Pharmacoepidemiol Drug Saf 15: 213-220.
50. Imming P, Sinning C, Meyer A (2006) Opinion - Drugs, their targets and the nature and number of drug targets. Nature Reviews Drug Discovery 5: 821-834.
51. Merino A, Bronowska AK, Jackson DB, Cahill DJ (2010) Drug profiling: knowing where it hits. Drug Discov Today 15: 749-756.
52. Oprea TI, Mestres J (2012) Drug repurposing: far beyond new targets for old drugs. AAPS J 14: 759-763.
53. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, et al. (2006) The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313: 1929-1935.
54. Garman KS, Acharya CR, Edelman E, Grade M, Gaedcke J, et al. (2008) A genomic approach to colon cancer risk stratification yields biologic insights into therapeutic opportunities. Proc Natl Acad Sci U S A 105: 19432-19437.
55. Huang L, Zhao S, Frasor JM, Dai Y (2011) An integrated bioinformatics approach identifies elevated cyclin E2 expression and E2F activity as distinct features of tamoxifen resistant breast tumors. PLoS One 6: e22274.
56. Wang G, Ye Y, Yang X, Liao H, Zhao C, et al. (2011) Expression-based in silico screening of candidate therapeutic compounds for lung adenocarcinoma. PLoS One 6: e14573.
57. Dudley JT, Sirota M, Shenoy M, Pai RK, Roedder S, et al. (2011) Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease. Sci Transl Med 3: 96ra76.
58. Sirota M, Dudley JT, Kim J, Chiang AP, Morgan AA, et al. (2011) Discovery and preclinical validation of drug indications using compendia of public gene expression data. Sci Transl Med 3: 96ra77.
59. Shigemizu D, Hu ZJ, Hung JH, Huang CL, Wang YJ, et al. (2012) Using Functional Signatures to Identify Repositioned Drugs for Breast, Myelogenous Leukemia and Prostate Cancer. Plos Computational Biology 8.
60. Schoeberl B, Pace EA, Fitzgerald JB, Harms BD, Xu L, et al. (2009) Therapeutically targeting ErbB3: a key node in ligand-induced activation of the ErbB receptor-PI3K axis. Sci Signal 2: ra31.
61. Kumar N, Afeyan R, Kim HD, Lauffenburger DA (2008) Multipathway model enables prediction of kinase inhibitor cross-talk effects on migration of Her2-overexpressing mammary epithelial cells. Mol Pharmacol 73: 1668-1678.
62. Perez-Diez A, Morgun A, Shulzhenko N (2007) Microarrays for cancer diagnosis and classification. Adv Exp Med Biol 593: 74-85.
63. Gu CC, Rao DC, Stormo G, Hicks C, Province MA (2002) Role of gene expression microarray analysis in finding complex disease genes. Genet Epidemiol 23: 37-56.
64. Watanabe T, Kobunai T, Tanaka T, Ishihara S, Matsuda K, et al. (2009) Gene expression signature and the prediction of lymph node metastasis in colorectal cancer by DNA microarray. Dis Colon Rectum 52: 1941-1948.
65. Nannini M, Pantaleo MA, Maleddu A, Astolfi A, Formica S, et al. (2009) Gene expression profiling in colorectal cancer using microarray technologies: results and perspectives. Cancer Treat Rev 35: 201-209.
66. Shibayama M, Maak M, Nitsche U, Gotoh K, Rosenberg R, et al. (2011) Prediction of Metastasis and Recurrence in Colorectal Cancer Based on Gene Expression Analysis: Ready for the Clinic? Cancers 3: 2858-2869.
67. Cardoso J, Boer J, Morreau H, Fodde R (2007) Expression and genomic profiling of colorectal cancer. Biochim Biophys Acta 1775: 103-137.
68. Newton MA, Kendziorski CM, Richmond CS, Blattner FR, Tsui KW (2001) On differential variability of expression ratios: improving statistical inference about gene expression changes from microarray data. J Comput Biol 8: 37-52.
69. Park T, Yi SG, Lee S, Lee SY, Yoo DH, et al. (2003) Statistical tests for identifying differentially expressed genes in time-course microarray experiments. Bioinformatics 19: 694-703.
70. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98: 5116-5121.
71. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102: 15545-15550.
72. Nacu S, Critchley-Thorne R, Lee P, Holmes S (2007) Gene expression network analysis and applications to immunology. Bioinformatics 23: 850-858.
73. Hwang T, Park T (2009) Identification of differentially expressed subnetworks based on multivariate ANOVA. BMC Bioinformatics 10: 128.
74. Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, et al. (2009) Human Protein Reference Database--2009 update. Nucleic Acids Res 37: D767-772.
75. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell's functional organization. Nature reviews Genetics 5: 101-113.
76. Cahill DP, Kinzler KW, Vogelstein B, Lengauer C (1999) Genetic instability and darwinian selection in tumours. Trends Cell Biol 9: M57-60.
77. Berger SI, Ma'ayan A, Iyengar R (2010) Systems pharmacology of arrhythmias. Sci Signal 3: ra30.
78. Van Der Graaf PH, Gabrielsson J (2009) Pharmacokinetic-pharmacodynamic reasoning in drug discovery and early development. Future Med Chem 1: 1371-1374.
79. Chung FH, Lee HH, Lee HC (2013) ToP: A Trend-of-Disease-Progression Procedure Works Well for Identifying Cancer Genes from Multi-State Cohort Gene Expression Data for Human Colorectal Cancer. PLoS One 8: e65683.
80. Gyorffy B, Molnar B, Lage H, Szallasi Z, Eklund AC (2009) Evaluation of microarray preprocessing algorithms based on concordance with RT-PCR in clinical samples. PloS one 4: e5645.
81. Galamb O, Gyorffy B, Sipos F, Spisak S, Nemeth AM, et al. (2008) Inflammation, adenoma and cancer: objective classification of colon biopsy specimens with gene expression signature. Dis Markers 25: 1-16.
82. Sabates-Bellver J, Van der Flier LG, de Palo M, Cattaneo E, Maake C, et al. (2007) Transcriptome profile of human colorectal adenomas. Mol Cancer Res 5: 1263-1275.
83. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature genetics 25: 25-29.
84. Zhu F, Shi Z, Qin C, Tao L, Liu X, et al. (2012) Therapeutic target database update 2012: a resource for facilitating target-oriented drug discovery. Nucleic Acids Res 40: D1128-1136.
85. Bewick V, Cheek L, Ball J (2004) Statistics review 9: one-way analysis of variance. Crit Care 8: 130-136.
86. Efron B, Tibshirani R (2002) Empirical bayes methods and false discovery rates for microarrays. Genet Epidemiol 23: 70-86.
87. Reiner A, Yekutieli D, Benjamini Y (2003) Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19: 368-375.
88. Garcia O, Saveanu C, Cline M, Fromont-Racine M, Jacquier A, et al. (2007) GOlorize: a Cytoscape plug-in for network visualization with Gene Ontology-based layout and coloring. Bioinformatics 23: 394-396.
89. Alexa A, Rahnenfuhrer J, Lengauer T (2006) Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22: 1600-1607.
90. Beissbarth T, Speed TP (2004) GOstat: find statistically overrepresented Gene Ontologies within a group of genes. Bioinformatics 20: 1464-1465.
91. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: R80.
92. Higgins ME, Claremont M, Major JE, Sander C, Lash AE (2007) CancerGenes: a gene selection resource for cancer genome projects. Nucleic Acids Res 35: D721-726.
93. Maglott D, Ostell J, Pruitt KD, Tatusova T (2005) Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res 33: D54-58.
94. Mitelman F (2000) Recurrent chromosome aberrations in cancer. Mutat Res 462: 247-253.
95. Hahn WC, Weinberg RA (2002) Modelling the molecular circuitry of cancer. Nat Rev Cancer 2: 331-341.
96. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, et al. (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4: 249-264.
97. Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: Article3.
98. Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: 44-57.
99. Kendall MG, Stuart, A. (1973) The Advanced Theory of Statistics, Volume 2: Inference and Relationship.
100. Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, et al. (1997) Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science 275: 1784-1787.
101. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, et al. (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275: 1787-1790.
102. Douillard JY, Cunningham D, Roth AD, Navarro M, James RD, et al. (2000) Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet 355: 1041-1047.
103. Rogers TB, Inesi G, Wade R, Lederer WJ (1995) Use of thapsigargin to study Ca2+ homeostasis in cardiac cells. Bioscience Reports 15: 341-349.
104. Frei E, 3rd, Holland JF, Schneiderman MA, Pinkel D, Selkirk G, et al. (1958) A comparative study of two regimens of combination chemotherapy in acute leukemia. Blood 13: 1126-1148.
105. Roifman I, Sun YC, Fedwick JP, Panaccione R, Buret AG, et al. (2009) Evidence of endothelial dysfunction in patients with inflammatory bowel disease. Clin Gastroenterol Hepatol 7: 175-182.
106. Gandhi S, Narula N, Marshall JK, Farkouh M (2012) Are Patients with Inflammatory Bowel Disease at Increased Risk of Coronary Artery Disease? The American Journal of Medicine 125: 956-962.
107. Voulgari PV (2011) Rheumatological manifestations in inflammatory bowel disease.
108. Li S, Armstrong CM, Bertin N, Ge H, Milstein S, et al. (2004) A map of the interactome network of the metazoan C. elegans. Science 303: 540-543.
109. Huang H, Jedynak BM, Bader JS (2007) Where have all the interactions gone? Estimating the coverage of two-hybrid protein interaction maps. PLoS Comput Biol 3: e214.
110. Bjorklund AK, Light S, Hedin L, Elofsson A (2008) Quantitative assessment of the structural bias in protein-protein interaction assays. Proteomics 8: 4657-4667.
111. Eisenberg E, Levanon EY (2003) Preferential attachment in the protein network evolution. Phys Rev Lett 91: 138701.
112. Jeong H, Mason SP, Barabasi AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411: 41-42.
113. Linderman GC, Chance MR, Bebek G (2012) MAGNET: MicroArray Gene expression and Network Evaluation Toolkit. Nucleic Acids Res 40: W152-156.
114. Ikushima H, Miyazono K (2010) TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer 10: 415-424.
115. Massague J (2008) TGFbeta in Cancer. Cell 134: 215-230.
116. Bierie B, Moses HL (2006) Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6: 506-520.
117. Adams JM, Cory S (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26: 1324-1337.
118. Yang L, Pang Y, Moses HL (2010) TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol 31: 220-227.
119. Baudino TA, McKay C, Pendeville-Samain H, Nilsson JA, Maclean KH, et al. (2002) c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression. Genes Dev 16: 2530-2543.
120. Zhong S, Delva L, Rachez C, Cenciarelli C, Gandini D, et al. (1999) A RA-dependent, tumour-growth suppressive transcription complex is the target of the PML-RARalpha and T18 oncoproteins. Nat Genet 23: 287-295.
121. Anderson GR (2001) Genomic instability in cancer. Current Science 81: 101-107.
122. Vucic EA, Brown CJ, Lam WL (2008) Epigenetics of cancer progression. Pharmacogenomics 9: 215-234.
123. Skotheim RI, Nees M (2007) Alternative splicing in cancer: noise, functional, or systematic? Int J Biochem Cell Biol 39: 1432-1449.
124. Thorsen K, Sorensen KD, Brems-Eskildsen AS, Modin C, Gaustadnes M, et al. (2008) Alternative splicing in colon, bladder, and prostate cancer identified by exon array analysis. Mol Cell Proteomics 7: 1214-1224.
125. Vaidyanathan S, Mansour P, Soni BM, Hughes PL, Singh G (2006) Chronic lymphocytic leukaemia, synchronous small cell carcinoma and squamous neoplasia of the urinary bladder in a paraplegic man following long-term phenoxybenzamine therapy. Spinal Cord 44: 188-191.
126. Brambilla G, Martelli A (2006) Genotoxicity and carcinogenicity studies of antihypertensive agents. Mutat Res 612: 115-149.
127. Pereira M, Millot JM, Sebille S, Manfait M (2002) Inhibitory effects of extracellular Mg2+ on intracellular Ca2+ dynamic changes and thapsigargin-induced apoptosis in human cancer MCF7 cells. Mol Cell Biochem 229: 163-171.
128. Tombal B, Weeraratna AT, Denmeade SR, Isaacs JT (2000) Thapsigargin induces a calmodulin/calcineurin-dependent apoptotic cascade responsible for the death of prostatic cancer cells. Prostate 43: 303-317.
129. Lin XS, Denmeade SR, Cisek L, Isaacs JT (1997) Mechanism and role of growth arrest in programmed (apoptotic) death of prostatic cancer cells induced by thapsigargin. Prostate 33: 201-207.
130. Hakii H, Fujiki H, Suganuma M, Nakayasu M, Tahira T, et al. (1986) Thapsigargin, a histamine secretagogue, is a non-12-O-tetradecanoylphorbol-13-acetate (TPA) type tumor promoter in two-stage mouse skin carcinogenesis. J Cancer Res Clin Oncol 111: 177-181.
131. Harmon CS, Ducote J, Xiong Y (1996) Thapsigargin induces rapid, transient growth inhibition and c-fos expression followed by sustained growth stimulation in mouse keratinocyte cultures. J Invest Dermatol 107: 188-194.
132. Lee DI, Sumbilla C, Lee M, Natesavelalar C, Klein MG, et al. (2007) Mechanisms of resistance and adaptation to thapsigargin in androgen-independent prostate cancer PC3 and DU145 cells. Arch Biochem Biophys 464: 19-27.
133. Kent LL, Hull-Campbell NE, Lau T, Wu JC, Thompson SA, et al. (1999) Characterization of novel inhibitors of cyclin-dependent kinases. Biochem Biophys Res Commun 260: 768-774.
134. Aizawa S, Ookawa K, Kudo T, Asano J, Hayakari M, et al. (2003) Characterization of cell death induced by ethacrynic acid in a human colon cancer cell line DLD-1 and suppression by N-acetyl-L-cysteine. Cancer Sci 94: 886-893.
135. Seyfried J, Soldner F, Schulz JB, Klockgether T, Kovar KA, et al. (1999) Differential effects of L-buthionine sulfoximine and ethacrynic acid on glutathione levels and mitochondrial function in PC12 cells. Neurosci Lett 264: 1-4.
136. Lu D, Liu JX, Endo T, Zhou H, Yao S, et al. (2009) Ethacrynic acid exhibits selective toxicity to chronic lymphocytic leukemia cells by inhibition of the Wnt/beta-catenin pathway. PLoS One 4: e8294.
137. Rhodes T, Twentyman PR (1992) A study of ethacrynic acid as a potential modifier of melphalan and cisplatin sensitivity in human lung cancer parental and drug-resistant cell lines. Br J Cancer 65: 684-690.
138. Lacreta FP, Brennan JM, Nash SL, Comis RL, Tew KD, et al. (1994) Pharmakokinetics and bioavailability study of ethacrynic acid as a modulator of drug resistance in patients with cancer. J Pharmacol Exp Ther 270: 1186-1191.
139. Tew KD, Bomber AM, Hoffman SJ (1988) Ethacrynic acid and piriprost as enhancers of cytotoxicity in drug resistant and sensitive cell lines. Cancer Res 48: 3622-3625.
140. Woelkart K, Feizlmayr E, Dittrich P, Beubler E, Pinl F, et al. (2010) Pharmacokinetics of bilobalide, ginkgolide A and B after administration of three different Ginkgo biloba L. preparations in humans. Phytother Res 24: 445-450.
141. Ahlemeyer B, Krieglstein J (2003) Pharmacological studies supporting the therapeutic use of Ginkgo biloba extract for Alzheimer's disease. Pharmacopsychiatry 36 Suppl 1: S8-14.
142. Shi C, Liu J, Wu F, Yew DT (2010) Ginkgo biloba extract in Alzheimer's disease: From action mechanisms to medical practice. Int J Mol Sci 11: 107-123.
143. Xia SH, Fang DC (2007) Pharmacological action and mechanisms of ginkgolide B. Chin Med J (Engl) 120: 922-928.
144. Aponte MM, Kwong J, Mok SC, Berkowitz RS, Cramer DW, et al. (2006) Gingkolide may prevent ovarian cancer through the platelet activating factor receptor (PAFR) pathway. AACR Meeting Abstracts 2006: A106-.
145. Jiang W, Qiu W, Wang Y, Cong Q, Edwards D, et al. (2011) Ginkgo may prevent genetic-associated ovarian cancer risk: multiple biomarkers and anticancer pathways induced by ginkgolide B in BRCA1-mutant ovarian epithelial cells. Eur J Cancer Prev 20: 508-517.
146. Jiang W, Cong Q, Wang Y, Ye B, Xu C (2012) Ginkgo May Sensitize Ovarian Cancer Cells to Cisplatin: Antiproliferative and Apoptosis-Inducing Effects of Ginkgolide B on Ovarian Cancer Cells. Integr Cancer Ther.
147. DeFeudis FV, Papadopoulos V, Drieu K (2003) Ginkgo biloba extracts and cancer: a research area in its infancy. Fundam Clin Pharmacol 17: 405-417.
148. Prusoff WH, Holmes WL, Welch AD (1954) Biological investigations of 6-azathymine, a thymine analog. Cancer Res 14: 570-574.
149. Ellison RR, Tan CT, Murphy ML, Krakoff IH (1960) [Clinical investigations of 6-azathymine: a thymine analog]. Cancer Res 20: 435-442.
指導教授 李弘謙(Hoong-Chien Lee) 審核日期 2014-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明