博碩士論文 100221002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:34.238.192.150
姓名 李昱霆(Yu-ting Lee)  查詢紙本館藏   畢業系所 數學系
論文名稱
(Nonlinear Balance Laws in Traffic Flow – A Model with Lane-changing Intensity)
相關論文
★ 氣流的非黏性駐波通過不連續管子之探究★ An Iteration Method for the Riemann Problem of Some Degenerate Hyperbolic Balance Laws
★ 影像模糊方法在蝴蝶辨識神經網路中之應用★ 單一非線性平衡律黎曼問題廣義解的存在性
★ 非線性二階常微方程組兩點邊界值問題之解的存在性與唯一性★ 對接近音速流量可壓縮尤拉方程式的柯西問題去架構區間逼近解
★ 一些退化擬線性波動方程的解的性質.★ 擬線性波方程中片段線性初始值問題的整體Lipchitz連續解的
★ 水文地質學的平衡模型之擴散對流反應方程★ 非線性守恆律的擾動Riemann 問題的古典解
★ BBM與KdV方程初始邊界問題解的週期性★ 共振守恆律的擾動黎曼問題的古典解
★ 可壓縮流中微黏性尤拉方程激波解的行為★ 非齊次雙曲守恆律系統初始邊界值問題之整域弱解的存在性
★ 有關非線性平衡定律之柯西問題的廣域弱解★ 單一雙曲守恆律的柯西問題熵解整體存在性的一些引理
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 於此篇文章中我們主要探討並研究一個關於交通流的非線性雙曲型守恆定律。此交通流的模型包含著一個能夠表示車道變換之車輛的強度的參數。這模型可以重寫成一個含有源項的守恆定律的形式(亦即此守恆定律方程式之等號右側帶有非零項)。此文章亦會展示幾種不同案例的車道變換強度之數值計算結果。
摘要(英) In this thesis we study a nonlinear hyperbolic balance law arise from traffic flow. The model of traffic flow consists of a parameter representing the intensity of lane-changing of vehicles. The model is rewritten as a balance law with source terms. The numerical results are given for different cases of lane-changing intensities.
關鍵字(中) ★ 守恆定律 關鍵字(英) ★ Balance law
★ Lane-changing intensity
論文目次 中文摘要 ……………………………………………………… i
英文摘要 ……………………………………………………… ii
目錄 ……………………………………………………… iii
論文本文 ……………………………………………………… 1
1. Introduction……………………………………… 2
2. Model of lane-changing traffic flow………… 5
3. Finite difference method………………………. 7
4. Numerical solutions……………………………. 11
Reference ……………………………………………………… 17
參考文獻 [1] G. Chen and J. Glimm, Global solution to the compressible Euler equations with geometrical structure, Comm. Math. Phys., 179(1996), page 153-193.
[2] R. Courant and K.O. Friedrichs, Supersonic flow and shock waves, John Wiley & Sons, New York, 1948.
[3] G. Dal Maso, P.G. LeFloch, and F. Murat, Definition and weak stability of nonconservative products, J. Math. Pures Appl. 74(1995), pp. 483-548.
[4] J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math. 18(1965), pp. 697-715.
[5] S.K. Godunov, A difference method for numerical calculations of discontinu- ous solutions of the equations of hydrodynamics, Mat. Sb. 47(1959), in Rus- sion, pp. 271-306.
[6] J. Hong, The Glimm scheme extended to inhomogeneous systems, Doctoral Thesis, UC-Davis.
[7] E. Isaacson, Global solution of a Riemann problem for a non-strictly hyper- bolic system of conservation laws arising in enhanced oil recovery, Rockefeller University preprint.
[8] E. Isaacson, D. Marchesin, B. Plohr, and B. Temple The Riemann problem near a hyperbolic singularity: the classification of solutions of quadratic Rie- mann problems I, SIAM J. Appl. Math.,48(1988), pp. 1009-1052.
[9] E. Isaacson, B. Temple, The structure of asymptotic states in a singular sys- tem of conservation laws, Adv. Appl. Math., 11(1990), pp. 205-219.
[10] E. Isaacson, B. Temple, Analysis of a singular hyperbolic system of conserva- tion laws, Jour. Diff. Equn., 65(1986), pp. 250-268.
[11] E. Isaacson, B. Temple, Examples and classification of non-strictly hyperbolic systems of conservation laws, Abstracts of AMS, January 1985. 
50
[12] E. Isaacson, B. Temple, Nonlinear resonance in systems of conservation laws, with E. Isaacson, SIAM Jour. Appl. Anal., 52, 1992, pp. 1260-1278.
[13] E. Isaacson, B. Temple, Convergence of the 2 × 2 Godunov method for a general resonant nonlinear balance law, SIAM Jour. Appl. Math., 55, No. 3, pp. 625-640, June 1995.
[14] B. Keyfitz and H. Kranzer, A system of non-strictly hyperbolic conservation laws arising in elasticity theory, Arch. Rat. Mech. Anal., 72(1980), pp.219- 241.
[15] S.N. Kruzkov, First order quasilinear equations with several space variables, Mat. USSR Sb. 10 (1970), pp.217-243.
[16] P.D. Lax, Hyperbolic systems of conservation laws, II, Comm. Pure Appl. Math. 10(1957), pp. 537-566.
[17] P.D. Lax and B. Wendroff, Systems of Conservation laws, Comm. Pure Appl. Math., 13 (1960), pp. 217-237.
[18] L. Lin, J. Wang and B. Temple, A comparison of convergence rates for Go- dunov’s method and Glimm’s method in resonant nonlinear systems of con- servation laws, with L.Lin and J. Wang., SIAM J. Numer. Anal., 32, No. 3, pp. 824-840.
[19] L. Lin, J. Wang and B. Temple, Suppression of oscillations in Godunov’s method for a resonant non-strictly hyperbolic system, SIAM J. Numer. Anal., 32, No. 3, June 1995.
[20] T.P. Liu, Quasilinear hyperbolic systems, Comm. Math. Phys., 68(1979), pp. 141-172.
[21] T.P. Liu, Resonance for a quasilinear hyperbolic equation, J. Math. Phys. 28 (11), (1987), pp. 2593-2602.
[22] D. Marchesin and P.J. Paes-Leme, A Riemann problem in gas dynamics with bifurcation, PUC Report MAT 02/84, 1984.
[23] O.A. Oleinik, Discontinuous solutions of non-linear differential equations, Us- pekhi Mat. Nauk (N.S.), 12(1957),no.3(75), pp. 3-73 (Am. Math. Soc. Trans., Ser. 2, 26, pp. 195-172.)
[24] J. Smoller, Shock waves and reaction diffusion equations, Springer-Verlag, Berlin, New York, 1983. 
51
[25] B. Temple, Global solution of the Cauchy problem for a class of 2 × 2 non- strictly hyperbolic conservation laws, Adv. in Appl. Math., 3(1982), pp. 335- 375.
[26] A. Tveito and R. Winther, Existence, uniqueness and continuous depen- dence for a system of hyperbolic conservation laws modelling polymer flooding, Preprint, Department of Informatics, University of Oslo, Norway, January, 1990.
[27] Wen-Long Jin *, A kinematic wave theory of lane-changing traffic flow, November 25, 2009.
[28] Wen-Long Jin *, A multi-commodity Lighthill-Whitham-Richards model of lane-changing traffic flow, Department of Civil and Environmental Engineering, University of California, 2012.
指導教授 洪盟凱 審核日期 2013-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明