博碩士論文 100221012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:3.227.240.143
姓名 黃淑如(Shu-ju Huang)  查詢紙本館藏   畢業系所 數學系
論文名稱 自由邊界的保角參數化在Matlab上實現
(Matlab Implementation for Conformal Parameterizations with Free Boundary)
相關論文
★ 台灣與韓國之十二年數學課程比較★ 台灣與英國三角函數課程之教科書比較
★ 以自迴歸模型分析神經元訊號間之因果關係★ 利用數值模擬探討各式干擾因子對兩電生理訊號因果關係判讀之影響
★ 一個物件導向的數學概念學習與診斷工具★ 增加解析度的凌波演算法
★ 提昇後的凌波函數與數值分析★ Helmholtz 方程與 Wavelet 迭代法
★ 影像放大與直脊函數★ 雙正交凌波函數於血壓與 交感神經活性訊號分析之應用
★ 中小學數學創意教學競賽實施之研究★ 血壓與交感神經活性訊號關係的數學模型
★ 國中生胚騰推理與數學能力之相關性研究★ 台灣與日本之十二年數學課程比較
★ 台灣與新加坡之十二年數學課程比較★ 神經細胞訊號的一種分類方法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 三角網格在幾何學中是經典的離散化表示方式。近年來,網格參數化研究已經有許多研究成果被提出。它廣泛的被應用在人臉貼圖、工程及醫學上,不同的應用方法也需要不同的參數化方式,而目的都是需要一個容易交互處理的參數域。在本篇論文我們回顧四個自由邊界參數化方法,包含最小平方共形映射、基於角度攤平法、線性基於角度攤平法以及保相似參數化方法,並透過Matlab的實現進行比較。而為了確認參數化方法的優劣,我們利用三個已知的度量方式進行比較:角度失真、L_2 stretch、L_2 shear。
在實驗結果我們得到ABF++所得到的參數化結果最佳,然而所花費的時間遠大於其他的方法。
摘要(英) Triangular mesh is the classical representation in geometry. Mesh parameterization have been proposed for many of studies in recent years. It is used in a wide range of texture mapping , engineering and medicine. Different applications require different methods of parameterization methods. The goal need an easy interactive processing of the parameter domain. In this thesis, we review four free boundary parameterization methods, (1) least squares conformal maps (LSCM), (2) angle based flattening (ABF++), (3) linear angle based flattening (LABF), (4) As-Similar-As-Possible Planar Parameterization (ASAP).
Through implementation of Matlab comparison parameterization. We use three metrics to measure the parametric distortion: angle distortion, L_2 stretch, and L_2 shear.
In the experimental results we have obtained ABF + + parameterization the best results, but the time it takes is much larger than other method.
關鍵字(中) ★ 自由邊界
★ 保角參數化
★ 參數域
★ 最小失真度
關鍵字(英) ★ free boundary
★ Conformal Parameterizations
★ parameter domain
★ minimization distortion
論文目次 中文摘要....................................i
英文摘要....................................ii
致謝........................................iii
圖目錄......................................iv
表目錄......................................v
1. 緒論.......................................... 1
1.1 前言...................................... 1
1.2 論文結構...............................1
1.3 符號表..................................... 2
2. 網格參數化.................................... 3
2.1 前言....................................... 3
2.2 最小平方共形映射........................... 3
(Least Squares Conformal Maps, LSCM)
2.3 基於角度攤平............................... 6
(Fast and Robust Angle Based Flattening, ABF++)
2.4 線性基於角度攤平.......................... 11
(Linear Angle Based Parameterization, LABF)
2.5 保相似的參數化............................ 13
(As-Similar-As-Possible Planar Parameterization, ASAP)
3. 參數化測量....................................15
3.1 前言...................................... 15
3.2 angle distortion..............................15
3.3 L2 stretch.................................. 15
3.4 L2 shear................................... 16
4. 網格資料實例應用.............................17
4.1 前言.................................. 17
4.2 實例測試.................................. 18
4.3 實驗分析及結論............................ 27
5. 參考文獻......................................28
參考文獻 [1] A. Bu, Conformality of Planar Parameterization for Single Boundary Triangulated Surface Meshes. 國立中央大學數學所碩士論文,2012.
[2] X. David and S.T. Yau, Computational Conformal Geometry. International Press of Boston, 2008.
[3] K. Hormann, B. Levy, and A. Sheffer, Mesh Parameterization: Theory and Practice. August. HAL - CCSD URL: {http://hal.inria.fr/inria-00186795/en/}, 2007.
[4] L. Kharevych, B. Springborn, and P. Schröder. Discrete conformal mappings via circle patterns. ACM Transactions on Graphics, 25(2):412–438, 2006.
[5] B. Lévy, S. Petitjean, N. Ray, and J. Maillot. Least squares conformal maps for automatic texture atlas generation. ACM Transactions on Graphics, 21(3):362–371, 2002.
[6] L. Liu, L. Zhang, Y. Xu, C. Gostsman, and S.J. Gortler. A local/global approach to mesh parameterization. Eurographics Symposium on Geometry Processing(SGP 2008) Volume 27, Number 5.
[7] P. V. Sander, J. Snyder, S. J. Gortler, and H. Hoppe. Texture mapping progressive meshes. In Proceedings of SIGGRAPH 2001, pages 409–416. ACM Press, 2001.
[8] A. Sheffer and E. de Sturler. Parameterization of faceted surfaces for meshing using angle-based flattening. Engineering with Computers, 17(3):326–337, 2001
[9] A. Sheffer, B. Lévy, M. Mogilnitsky, and A. Bogomyakov. ABF++: fast and robust angle based flattening. ACM Transactions on Graphics, 24(2):311–330, 2005.
[10] R. Zayer, B. Levy, and H.P. Seidel. Linear angle based parameterization. Geometry Processing, (SGP’07):349-360, 2007.
[11] AIM@SHAPE Shape Repository. http://shapes.aimatshape.net/
指導教授 單維彰(Wei-chang Shann) 審核日期 2013-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明