博碩士論文 100222001 詳細資訊

以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:176 、訪客IP:
姓名 陳修博(Chen Hsiu-Po)  查詢紙本館藏   畢業系所 物理學系
論文名稱 多細菌鞭毛馬達的同步轉動量測
(Simultaneously monitoring the rotation of multiple bacterial flagellar motors)
★ Investigation of the Dual Flagellar Motor System★ 長形群游細菌的集體運動
★ Investigating Stators Assembly of Flagellar Motors in Escherichia Coli by PALM★ 被動粒子在不同的流體型態
★ Lab on the Agar Plates★ Dynamical Patterns in Vibrio alginolyticus Swarm Plate
★ Probing the Physical Environments of Bacterial Swarm Colony★ Spiral-coil Formation in Semi-flexible Self-propelled Chain System
★ Real-Time Measurement of Vibrio alginolyticus Polar Flagellar Growth★ Foraging behavior of Caenorhabditis elegans
★ Investigating the Growth Mechanism of Bacterial Flagella by Real-time Fluorescent Imaging★ Jamming State of Active Nematics
★ Probing Escherichia coli Energetics under Starvation by Single-Cell Measurements
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 大腸桿菌是用它們的鞭毛馬達來做游泳的運動。這一個微小的分子馬達利用氫離子流與氫離子驅動力來帶動。一隻大腸桿菌擁有4-8根左旋的鞭毛。當它們的所有鞭毛同時做逆時針的旋轉時,鞭毛會形成一束並推進細菌。而當有一根以上的鞭毛反轉,也就是做順時針旋轉的話,反轉的鞭毛就會脫離原本整束的鞭毛,並且會改變細菌的前進方向。而造成鞭毛馬達反轉的原因,是因為一個訊號傳遞的蛋白質CheY造成的。然而我們也發現,反轉的頻率會隨著鞭毛上的負載重量而改變。然而,每隻細菌的CheY的基準濃度與氫離子驅動力都不同。為了消除這兩項變因,我們使用高速攝影機(~957 fps)來拍攝細菌,並且我們讓一隻細菌身上,兩根鞭毛上各自負載了不同的重量(不同大小的珠子)。討論其同一隻菌身上,不同的負載與速度,反轉的頻率會有什麼樣的改變。在我們有限的數據之中,我們發現在高負載的區域,轉動切換的速率並沒有很大的變化。
摘要(英) Escherichia coli use flagellar motors to swim. This tiny molecular machine is powered by proton flux through proton-motive force. The cells can be propelled by 4-8 left-handed helical flagellar filaments in one cell. When all of the motors rotate counterclockwise (CCW), the filaments can form a bundle to propel the cells forward. When one or more motors switch to clockwise (CW), their filaments will move out of the bundle and change the direction of the cells. The switching rate of the motor is modulated by the signal transduction molecules CheY binding to the motor. However, the external loading will affect the switching rate. For large number cell average, the CCW/CW switching rates depend on load. However, the CheY concentration and motor driving are different from cell to cell. Here, we examine the two motor switching rates at different external loads in one cell to eliminate the cellular CheY concentration and proton-motive force variations. We use high speed camera (~957 fps) to monitor two different size of beads attached to the motors in single cell. In our limited data, the switching rate is independent on the external load in high load region.
Appling the high speed camera method to monitoring the rotation of multiple flagellar motors, we can also test possibility of coordinated switching of bacterial flagellar motors. On contrary to the previous report, we directly measure the rotation of two flagellar motors. We did not find high rotational correlation between neighboring motors.
We also use the same method, high speed camera, to observe the proton-motive force of multiple cells, we add the ethanol and the ionophore (CCCP) to the motility medium and observed cells how fast did cells died. We can record rotational speed of the tethered cells and we can know the relationship between the rotational speed and the times. The rotation of bacterial flagellar motor is a direct indication of proton motive force.
關鍵字(中) ★ 大腸桿菌
★ 鞭毛馬達
★ 反轉
★ 高速攝影機
★ 暗視野顯微鏡
關鍵字(英) ★ E coli
★ flagellar motor
★ switching
★ high speed camera
★ dark field microscope
論文目次 Chapter 1 Introduction 1
1.1 Motivation 1
1.2 E. coli and the Flagellar Motor 2
1.3 The structure of the motor 4
1.4 Flagellar motion 6
1.5 The chemotaxis 7
1.5.1 Responses to attractants 7
1.5.2 Switch complex and the protein CheY 8
1.5.3 The chemotaxis pathway 9
1.6 Torque and speed 11
1.6.1 Proton motive force (PMF) 11
1.6.2 Torque Versus Speed 12
1.6.3 The Switching Rate 14
Chapter 2 Measurement and Apparatus 16
2.1 Bacterial Flagellar Motor rotational measurements 16
2.1.1 Linear gradient filter 16
2.1.2 Optical trap and QPD 18
2.1.3 The high speed camera 20
2.1.4 Compare with these three different methods 22
2.2 Microscope Principle 23
2.2.1 Eclipse E200 and the GE680 camera 23
2.2.2 Bright Field and Dark Field 25
2.3 Tethered Cells 27
2.3.1 Protocol 27
2.4 Beads Assay 28
2.4.1 Protocol 28
Chapter 3 Result and Discussion Torque speed and ionphore effects 31
3.1 Measurement of speed of the beads 31
3.2 Torque and speed 33
3.3 Adding ethanol 36
3.4 Adding CCCP 36
Chapter 4 Switching in different load 39
4.1 Why did we want to do this experiment? 39
4.2 The switching rate 41
4.2.1 The correlation of the motor-motor on the same cell 42
Chapter 5 Conclusion and future works 51
Reference 52
參考文獻 [1]. Berg, H. C. (2003b). The rotary motor of bacterial flagella. Annual Review of Biochemistry 72, 19-54.
[2]. Berry, R. M. and Armitage, J. P. (1999). The bacterial flagella motor. Advances in
Microbial Physiology 41, 291-337.
[3]. Macnab, R. M. (1996). Flagella and motility. In Escherichia coli and Salmonella:
Cellular and Molecular Biology (eds. F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger), pp. 132-145. Washingtion, DC: American Society for Microbiology.
[4]. Berg, H. C. (2000). Constraints on models for the flagellar rotary motor. Roy. Soc.
355, 503-509.
[5]. Berg, H. C. (1974). Dynamic properties of bacterial flagellar motors. Nature 249,
[6]. Ueno, T., Oosawa, K. and Aizawa, S. (1992). M ring, S ring and proximal rod of the
flagellar basal body of Salmonella typhimurium are composed of subunits of a single protein, FliF. J. Mol. Biol. 227, 672-677.
[7]. Ueno, T., Oosawa, K. and Aizawa, S. (1994). Domain structures of the MS ring
component protein (FliF) of the flagellar basal body of Salmonella typhimurium. J. Mol. Biol. 236, 546-555.
[8]. Berg, H. C. (1973). Bacteria swim by rotating their flagellar filaments. Nature
245, 380-382.
[9]. Berg, H. C. and Brown, D. A. (1972). Chemotaxis in Escherichia coli analysed by
Three-dimensional Tracking. Nature 239, 500-504.
[10]. Turner, L., Ryu, W. S. and Berg, H. C. (2000). Real-Time imaging of fluorescent
flagellar filaments. J. Bacteriol 182, 2793-2801.
[11]. Berry, R. M. (2001). Bacterial Flagella: Flagellar Motor. The Randall Institute, King’s College London, London, UK.
[12]. Darnton, N. C., Turner, L., Rojevsky, S. and Berg, H. C. (2010). Dynamics of
bacterial swarming. Biophys. J. 98, 2082-2090.
[13]. Segall, J. E., Block, S. M. and Berg, H. C. (1986). Temporal comparisons in bacterial
chemotaxis. Proc. Natl. Acad. Sci. USA. 83, 8987-8991.
[14]. Lee, S. Y., Cho, J. G. Pelton, et al. (2001). Crystal structure of an activated response
regulator bound to its target. Nature Struct. Biol. 8, 52-56.
[15]. Turner, L., Caplan, S. R. and Berg, H. C. (1996). Temperature-induced switching of the
bacterial flagellar motor. Biophysical Journal 71, 2227-2233.
[16]. Barak, R. and Eisenbach, M. (1992). Correlation between phosphorylation of the chemotaxis protein CheY and its activity at the flagellar motor. Boichemistry 31, 1821-1826.
[17]. Berg, H. C. and Turner, L. (1993). Torque generated by the flagellar motor of Escherichia coil. Biophys. J. 65, 2201-2216.
[18]. Ryu, W. S., Berry, R. M. and Berg, H. C. (2000). Torque-generating units of the
flagellar motor of Escherichia coli have a high duty ratio. Nature 403, 444-447.
[19]. Yuan, J., Fahrner, K. A. and Berg, H. C. (2009) Switching of the bacterial flagellar motor near zero load. J. Mol. Biol. 390, 394-400.
[20]. Fahrner, K. A., Ryu, W. S. and Berg, H. C. (2003). Bacterial flagellar switching under load. Nature. 423, 938.
[21]. Yuan, J. and Berg, H. C. (2008). Resurrection of the flagellar motor near zero load. Proc. Natl Acad. Sci. USA, 105, 1182-1185.
[22]. Yuan, J. Fahrner, K. A. and Berg, H. C. (2009). Switching of the bacterial flagellar motor near zero load. J. Mol. Biol. 390, 394-400.
[23]. Muramoto, K., Kawagishi, I., Kudo, S., Magariyama, Y., Imae, Y. and Homma, M. (1995). High-speed rotation and speed stability of sodium-driven flagellar motor in Vibrio alginolyticus. J. Mol. Biol. 251, 50-58.
[24]. Berg, H. C. (1993). Random Walks in Biology, Princeton University Press, Princeton, NJ.
[25]. Terasawa, S., Fukuoka, H., Inoue, Y., Sagawa, T., Takahashi, H. and Ishijima, A. (2011). Corrdinated Reversal of Flagellar Motors on a Single Escherichia coli Cell. Biophysical Journal 100, 2193-2200.
[26]. Nicholas C. Darnton, Turner L., Rojevsky S. and Berg H. C. (2007). On Torque and Tumbling in Swimming Escherichia coli. J Bacteriol 189, 1756–1764.
[27]. Bo H. and Yuhai T. (2013). Coordinated Switching of Bacterial Flagellar Motors:
Evidence for Direct Motor-Motor Coupling? PRL 110, 158703.
[28]. Korobkova E., Emonet T., Jose M. G. V., Thomas S. S. and Clusel, P. (2004). From molecular noise to behavioural variability in a single bacterium. Nature 428, 574-578.
[29]. Macnab, R. M. and Berg H. C. (1997). Absence of a barrier to backwards rotation of the bacterial flagellar motor demonstrated with optical tweezers. Proc. Natl. Acad. Sci. USA. 94, 14433-14437.
[30]. Chen, X. and Berg, H.C. (2000). Torque-Speed Relationship of the Flagellar Rotary Motor of Escherichia coli. Biophysical Journal 78, 1036-1041.
指導教授 羅健榮(Chien-Jung Lo) 審核日期 2013-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明