博碩士論文 100222003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.92.28.84
姓名 高仕麒(Shih-Chi Kao)  查詢紙本館藏   畢業系所 物理學系
論文名稱 建造準相位匹配高階諧波產生的拍波脈衝串
(Construction of a Beat‐Wave Pulse Train for Quasi‐Phase‐Matched High‐Harmonic Generation)
相關論文
★ 利用X光光電子能譜儀進行氬原子團簇游離能的研究★ 發展利用對撞光學拍頻脈衝波產生准相位匹配高階諧波
★ X光探測紅外線激發氬原子團簇產生奈米電漿球振盪現象之相關研究★ 在Pt(111)表面上研究雷射輔助光電效應
★ Preliminary Experiment for the Control of Cluster Vibration★ 釔鋇銅氧高溫超導薄膜的成長及診斷
★ 高階諧波產生極紫外光的脈衝時寬量測★ 相位匹配之極紫外光高階諧波產生
★ 一百兆瓦雷射系統之建造與在結構化電漿波導之應用★ 超短極紫外線脈衝之單發式波形強度量測
★ 利用不同波長脈衝雷射產生高階諧波並最佳化相位匹配條件★ 經由高強度雷射引發尾場所產生的非熱效 應電子加速
★ 雷射電漿中無碰撞激震波的全域與局域量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 對於產生同調軟 X 射線激光在水窗區域,我們計劃聚焦主要激光在高原子數離子的介
質,產生高階諧波。高階諧波產生的效率被主要激光和高階諧波的相位不批配限制。在反相
位的高階諧波區域的電場和正相位的高階諧波的區域的電場會相消干涉,使高階諧波產生的
效率強度不能建設性增加。然而,強度相對較弱的(1/100)反方向對撞激光可以破壞高階
諧波產生在反相位的範圍。因此,我們建立雙色的激光放大系統,構建一個可控脈衝間隔時
間 的拍波脈衝序列,以對應準相位匹配條件使高階諧波可以建設性增加產生。
雙色激光放大系統是 100-TW 激光系統的分支。它的中心波長為 800 nm。首先,它被
是聚焦於充滿氪氣的長管中產生超連續光譜的產生。由於自相位調製,它可擴展頻譜到 900
nm。在那之後,我們送它進聲光調變器過濾為兩個尖峰的光譜。隨後,它進入到脈衝延展器
的時間把時間延展從 50 fs 到 50 ps。最後,它通過第一級放大器和第二級放大器來放大
能量。在脈衝壓縮器中,我們可以壓縮成短的脈衝時間和調整屋頂鏡延遲線在脈衝壓縮器中,
使雙色波的時間重疊間並形成拍波序列脈衝串。
在那之後,我們要實驗這雙色激光系統可以構建我們想要的脈衝串。在這裡,我們用
20-TW 激光作為探針波與拍波在 BBO 上交叉產生和頻(SFG)。我們可以調整探測波延遲線來
做互相關實驗。
最後,在 600 fs 的脈衝串可以觀察到近 10 個清晰的脈衝。該脈衝間隔時間恰好對應
高階諧波準相位匹配條件。
摘要(英) For generating coherent soft x-ray laser in the water window region, we plan to
focus driving laser on the high-Z ions as interacting medium to generate high-
harmonic generation. The efficiency of high-harmonic generation is limited by the
phase-mismatch of driving laser and high-harmonic generation. The out-of phase
high-harmonic generation field and in phase high-harmonic generation field cause
destructive interference so that the efficiency of high-harmonic generation intensity
can not constructively increase.
However, a relatively weak intensity (1/100) counter-propagating laser can disrupt
the high-harmonic generation emission from the out-of phase range. Therefore, we
build the two-color laser amplifier system to construct a beat-wave pulse train with
controllable pulse separation time to fit quasi-phase-matching condition of high-
harmonic generation.
The seed laser of the two-color laser amplifier system is from the 100-TW laser
system branch. The center wavelength is 800 nm. First, it is focused on a long tube
full of Kr gas to generate supercontinuum generation. The spectrum can be extended
to 900 nm due to self-phase modulation. After that, we send it into Dazzler to filter
the spectrum into two peaks. Then, it goes to stretcher to stretch the duration from
50 fs to 50 ps. After all, it gains energy through first-stage amplifier & second-
stage amplifier. In the compressor, we can compensate the dispersion of chirp pulse
to compress it into short pulse duration and adjust roof mirror delay line in the
compressor to make two color waves temporal overlap and form beat-wave pulse
train.
After that, we want to examine that this two-color laser system can construct the
pulse train we want. Here, we use 20-TW beam line as a probe wave to cross
with beat-wave on BBO crystal generating sum-frequency generation (SFG). We
can adjust the delay line of probe wave to do the cross-correlation experiment.
Finally, these are nearly 10 clear pulses being obtained in a 600-fs pulse train. The
separation time of pulses just fit quasi-phase-matching condition of high-harmonic
generation.
關鍵字(中) ★ 同調
★ 軟 X 射線激光
★ 高階諧波
★ 雙色激光系統
★ 脈衝串
關鍵字(英) ★ soft x-ray laser
★ high-harmonic generation
★ two-color laser amplifier system
★ pulse train
論文目次 Contents
1 Introduction and Motivation 1
1.1 Introduction of High-Harmonic Generation . . . . . . . . . . . . . . . 1
1.2 HHG Phase-Mismatching Problem . . . . . . . . . . . . . . . . . . . 3
1.3 Quasi-Phase-Matching Method (QPM) . . . . . . . . . . . . . . . . . 5
1.3.1 Selective-Zoning Quasi-Phase-Matching Method . . . . . . . . 6
1.3.2 Beat-Wave Pulse Train for QPM . . . . . . . . . . . . . . . . 8
2 Two-Color Laser Amplifier System 11
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Two-Color Laser Amplifier System Layout . . . . . . . . . . . . . . . 11
2.3 Supercontinuum Generation . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Self-Phase Modulation (SPM) . . . . . . . . . . . . . . . . . . 13
2.3.2 Simulation of SPM . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 The Stability of WLG & Supercontinuum Generation . . . . . 17
2.3.4 Acousto-optic Programmable Dispersive Filter (Dazzler) . . . 21
2.4 First-Stage Amplifier & Second-Stage Amplifier . . . . . . . . . . . . 22
2.5 Compressor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3 Characterization of the Beat-Wave Pulse Train 29
3.1 Experiment Setup & Layout . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Experiment Flowing Chart . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Beat-Wave Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Conclusion and Prospect . . . . . . . . . . . . . . . . . . . . . . . . 40
Bibliography 43
參考文獻 [1] Thomas Brabec and Ferenc Krausz. Intense few-cycle laser fields: Frontiers of
nonlinear optics. 72(2):545–591, April 2000.
[2] Ph. Zeitoun, G. Faivre, S. Sebban, T. Mocek, A. Hallou, M. Fajardo, D. Aubert,
Ph. Balcou, F. Burgy, D. Douillet, S. Kazamias, G. de Lacheze-Murel,
T. Lefrou, S. le Pape, P. Mercere, H. Merdji, A. S. Morlens, J. P. Rousseau,
and C. Valentin. A high-intensity highly coherent soft x-ray femtosecond laser
seeded by a high harmonic beam. Nature, 431(7007):426–429, September 2004.
[3] M. Lewenstein, Ph. Balcou, M. Yu. Ivanov, Anne L’Huillier, and P. B. Corkum.
Theory of high-harmonic generation by low-frequency laser fields. 49(3):2117–
2132, March 1994.
[4] P. B. Corkum. Plasma perspective on strong field multiphoton ionization.
71(13):1994–1997, September 1993.
[5] Robert W. Boyd. Nonlinear Optics, Third Edition. Academic Press, 3 edition,
April 2008. Published: Hardcover.
[6] S. Augst, D. Strickland, D. D. Meyerhofer, S. L. Chin, and J. H. Eberly. Tun-
neling ionization of noble gases in a high-intensity laser field. Phys. Rev. Lett.,
63:2212–2215, Nov 1989.
[7] Krishnan R. Parameswaran, Jonathan R. Kurz, Rostislav V. Roussev, and Mar-
tin M. Fejer. Observation of 99% pump depletion in single-pass second-harmonic
generation in a periodically poled lithium niobate waveguide. 27(1):43–45, Jan-
uary 2002.
[8] A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M.
Murnane, H. C. Kapteyn, and S. Backus. Quasi-phase-matched generation of
coherent extreme-ultraviolet light. Nature, 421(6918):51–54, January 2003.
[9] Justin Peatross, Sergei Voronov, and I. Prokopovich. Selective zoning of high
harmonic emission using counter-propagating light. 1(5):114–125, September
1997.
[10] S. L. Voronov, I. Kohl, J. B. Madsen, J. Simmons, N. Terry, J. Titensor,
Q. Wang, and J. Peatross. Control of laser high-harmonic generation with
counterpropagating light. 87(13):133902, September 2001.
[11] Xiaoshi Zhang, Amy L. Lytle, Tenio Popmintchev, Xibin Zhou, Henry C.
Kapteyn, Margaret M. Murnane, and Oren Cohen. Quasi-phase-matching and
45
and Its Application in Laser-Cluster Interaction and X-Ray Lasers. PhD thesis,
NTU, Taipei, Taiwan, 2005.
[13] Jarman Courtney, Douglass Schumacher, and Camelia Modoran. Supercon-
tinuum generation in sapphire: A measurement of intensity. (REU Summer
Program), 2005.
[14] Hajime Nishioka, Wataru Odajima, Ken-ichi Ueda, and Hiroshi Takuma. Ultra-
broadband flat continuum generation in multichannel propagation of terrawatt
ti:sapphire laser pulses. 20(24):2505–2507, December 1995.
[15] M. Nisoli, S. De Silvestri, and O. Svelto. Generation of high energy 10 fs pulses
by a new pulse compression technique. 68(20):2793–2795, 1996.
[16] Tai-Wei Yau, Chau-Hwang Lee, and Jyhpyng Wang. Femtosecond self-
focusing dynamics measured by three-dimensional phase-retrieval cross corre-
lation. 17(9):1625–1635, September 2000.
[17] S. Sreeja, S. Venugopal Rao, P. Radhakrishnan, Surya P. Tewari, and
P. Prem Kiran. Supercontinuum emission from water using fs pulses in the
external tight focusing limit. pages 824718–824718–6, 2012.
[18] F. A. Ilkov, L. Sh Ilkova, and S. L. Chin. Supercontinuum generation versus
optical breakdown in CO2 gas. 18(9):681–683, May 1993.
指導教授 朱旭新(Hsu-hsin Chu) 審核日期 2013-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明