博碩士論文 100222005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.81.29.226
姓名 梁欣揚(Shin-Yang Liang)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Role of strain in the solid phase epitaxial regrowth of dopant and isovalent impurities co-doped silicon)
相關論文
★ 細菌地毯微流道中的次擴散動力學★ hydrodynamic spreading of forces from bacterial carpet
★ What types of defects are created on supported chemical vapor deposition grown graphene by scanning probe lithography in ambient?★ 以掃描式電容顯微鏡研究硼離子在矽基板中的瞬態增強擴散行為
★ 應變及摻雜相互對以磷離子佈植之碳矽基板的固態磊晶成長動力學之研究★ 雜質在假晶型碳矽合金對張力之熱穩定性影響
★ Revisiting the role of strain in solid-phase epitaxial regrowth of ion-implanted silicon★ 利用選擇性參雜矽基板在石墨稀上局部陽極氧化反應
★ Thermal stability of supersaturated carbon incorporation in silicon★ 氧化銅上的石墨烯在快速化學氣相沉積過程中的成核以及成長動力學
★ Reduction dynamics of locally oxidized graphene★ 微小游泳粒子在固定表面的聚集現象
★ Role of impurities in semiconductor: Silicon and ZnO substrate★ The growth of multilayer graphene through chemical vapor deposition
★ Characteristic of defect generated on graphene through pulsed scanning probe lithography★ non
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 廣義費米能階位移理論係一在描述擁有雜質參雜的固態磊晶成長中最完整發展的理論,其中利用費米能階之位移來解釋固態磊晶成長速度之提升與降低。固態磊晶成長之速度不僅與費米能階位移有關,也和由雜質在晶格中所造成之應變有極大的相關性。在已被提出的帶有應變之費米能階位移理論中假設由載體所提供之晶格應變與由和矽原子等價之雜質的應變可直接合併以做成長速度之計算,但是卻還沒有對於有拉伸應變之矽晶格這系列作相關討論。在這次的研究中,我們將已做過碳離子佈值之矽晶圓進一步佈值磷及砷,以製造一相同的費米能階位移組合。接著利用時間解析反射率之量測方式,我們發現到費米能階位移所造成之速率上升會和應變造成的速率降低有一競爭關係。然而,由鍺在矽晶格中造成的壓縮應變會使磊晶成長速度降低這個部分已經由前人所提及。但在我們的實驗中發現碳所造成的拉伸應變會對磊晶成長速率造成顯著的降低,這和先前所提出的理論預測不符合。我們利用等價不同共價半徑大小之參雜,由費米能階位移及應變所改變的固態磊晶成長速度也可解此分開探討,在這篇論文中也藉此提出了修正並更成功地描述帶有應變之費米能階位移理論。
摘要(英) Generalized Fermi-level Shifting (GFLS) model is one of the most highly developed models describing the dopant enhanced solid phase epitaxial regrowth (SPER) rate. It has been reported that SPER in doped silicon will have a rate enhancement or retardation due to the shift in Fermi-level. The SPER of recrystallization of Si from amorphous state also has a dependence on strain introduced by doping or isovalent impurities by atomic size mismatch. Existing strain included GFLS model assumes additivity of dopant and isovalent impurities induced strain for SPER rate enhancement, which is not tested in the tensile strained host lattice regime. In this experiment, C (isovalent) implanted tensile strained silicon host substrates had been further implanted with P, and As (doping impurities) to result in similar Fermi-level shifting. We found by in-situ time-resolved reflectivity measurement, that the strain reduced SPER rate competes with dopant induced Fermi-level shift. Nonetheless, while the compressive strain induced by Ge will retard SPER had been reported[D’Angelo], but in our experimental data the tensile strain induced by C does not enhance SPER rate as predicted by existing model. With fixed dopant implantation profile, the two effects on SPER can be disentangled and we therefore propose a modified version for the better description of the strain included GFLS model.
關鍵字(中) ★ 磊晶成長
★ 矽基板
★ 費米能階位移
關鍵字(英) ★ solid phase epitaxial regrowth
★ silicon substrate
★ generalized fermi level shifting
論文目次 Chapter 1 Introduction 1
Chapter 2 Background and theory 6
2.1 Solid phase epitaxial regrowth 6
2.1.1 Basic concept of SPER 7
2.1.2 Growth of dopants or impurities implanted Si 9
2.2 SPER models in the early stage 11
2.2.1 Bond rearrangement model 11
2.2.2 Interstitial-vacancy recombination model 14
2.2.3 Electronic process at a/c interface model 17
2.2.4 Generalized Fermi Level Shifting model 19
2.2.5 Activation strain tensor 21
2.3 Solid solubility in ion implanted silicon 25
2.3.1 Strain effects on the solid solubility of impurities 27
Chapter 3 Experiment setup and measurement 30
3.1 Sample preparation 30
3.1.1 Stopping range of ion in matters 31
3.1.2 Implantation profile calculation 32
3.1.3 RCA cleaning process 33
3.2 Experimental setup 34
3.2.1 Time-resolved reflectivity 36
3.2.2 Four-point probes method 39
3.2.3 Strain calculation 40
3.2.4 Fermi-level calculation 41
Chapter 4 Results and Discussion 45
4.1 Time-resolved reflectivity of all samples 46
4.2 Individual strain induced SPER rate lowering formula 48
4.3 SPER rate in n-type dopants and isovalent carbon co-doping samples 51
4.3.1 Reversed-GFLS behavior in As-C co-doping SPER 54
4.3.2 SPER rate of P-C co-doping samples 56
4.4 Characteristic of strain dependence coefficients in As-C and P-C co-doping samples 58
4.5 SPER host lattice determination: silicon or silicon carbon alloy? 61
Chapter 5 Conclusion 63
Bibliography 65
參考文獻 1. D. D’Angelo, L. Romano, I. Crupi, E. Carria, V. Privitera and M. G. Grimaldi. Appl. Phys. Lett. 93, 231901 (2008).
2. S. D. Kim, C. M. Park, and J. C. S. Woo, IEEE Trans. Electron Devices 49, 1748 (2002).
3. S. N. Hong, G. A. Ruggles, J. J. Wortman, and M. C. Oztrk, IEEE Trans. Electron Devices 38, 476 (1991).
4. T. Gebel, M. Voelskow, W. Skorupa, G. Mannino, V. Privitera, F. Priolo, E. Napolitani, and A. Carnera, Nucl. Instrum. Meth. B 186, 287 (2002).
5. S. Whelan, V. Privirera, M. Italia, G. Mannino, C. Bongiorno, C. Spinella, G. Fortunato, L. Mariucci, M, Stanizzi, and A. Mittiga, J. Vac. Sci. Technol. B 20, 644(2002).
6. K. C. Ku, C. F. Nieh, J. Gong, L. P. Huang, Y. M. Sheu, C. C. Wang, C. H. Chen, H. Chang, L. T. Wang, T. L. Lee, S. C. Chen, and M. S. Liang, Appl. Phys. Lett. 89, 112104 (2006).
7. L. A. Edelman, S. Jin, K. S. Jones, R. G. Elliman, and L. M. Rubin, Appl. Phys. Lett. 93, 072107 (2008).
8. Z. Te, T. Kim, A. Zojaji, E. Sanchez, Y. Cho, M. Castle, and M. A. Foad, Semicond. Sci. Technol. 22, 171 (2007).
9. S. Ruffell, I. V. Mitchell, and P. J. Simpson, J. Appl. Phys. 98, 083522 (2005).
10. S. M. Koh, G. S. Samudra, and Y. C. Yeo, Appl. Phys. Lett. 97, 032111 (2010).
11. W. Y. Woon, S. H. Wang, Y. T. Chuang, M. C. Chuang and C. L. Chen, Appl. Phys. Lett. 97, 141906 (2010).
12. J. W. Mayer, L. Eriksson and J. A. Davies, Can. J. Phys. 45, 663 (1968).
13. G. L. Olson, J. A. Roth, Mater. Sci. Rep. 3, 1 (1988).
14. E. P. Donovan, F. Spaepen, D. Turnbull, J. M. Poate and D. C. Jacobson, Appl. Phys. Lett. 42, 698 (1983).
15. E. P. Donovan, F. Spaepen, D. Turnbull, J. M. Poate and D. C. Jacobson, J. Appl. Phys. 57, 1795 (1985).
16. L. Cseprig, E. F. Kennedy, T. J. Gallagher and J. W. Mayer. J. Appl. Phys. 48, 10 (1977).
17. I. Suni, G. Goltz, M. G. Grimaldi, M. A. Nicolet and S. S. Lau, Appl, Phys. Lett. 40(3), 269 (1982).
18. I. Suni, G. Goltz, M. -A. Nicolet and S. S. Lau, Thin Solid Films 93, 171 (1982).
19. A. Lietoila, A. Wakita, T. W. Sigmon and J. F. Gibbons, J. Appl. Phys. 53, 4399 (1982).
20. E. F. Kennedy, L. Cseprgi, J. W. Mayer and T. W. Sigmon. J. Appl. Phys. 48, 4241 (1977).
21. L. Csepregi, E. F Kennedy, J. W. Mayer and T. W. Sigmon, J. Appl. Phys. 49, 3906 (1978).
22. J. Narayan, J. Appl. Phys. 53, 12 (1982).
23. J. S. Williams and R. G. Elliman, Phys. Rev. Lett. 51, 12 (1983).
24. B. C. Johnson and J. C. McCallum, Phys. Rev. B. 76, 045216 (2007).
25. G. Q. Lu, E. Nygren and M. J. Aziz, J. Appl. Phys. 70 , 5323 (1991).
26. M. J. Aziz, Paul C. Sabin and G. Q. Lu, Phys. Rev. B. 44, 18 (1991).
27. F. A. Trumbore, Bell Syst. Tech. J. 39, 205 (1960).
28. J. S. Williams and R. G. Elliman, Nuclear Instruments and Methods, 182–183, 389-395 (1981).
29. B. J. Pawlak, R. Duffy, T. Janssens, W. Vandervorst, K. Maex, A. J. Smith, N. E. B. Cowern, T. Dao, and Y. Tamminga, Appl. Phys. Lett. 87, 031915 (2005).
30. H. J. Herzog, L. Csepregi and H. Seidel, J. Electrochem. Soc. Solid-state science and technology, Vol. 131, No. 12, p. 2969 (1984).
31. Babak Sadigh, Thomas J. Lenosky, Maria-Jose Caturla, Andrew A. Quong, Lorin X. Benedict, Tomas Diaz de la Rubia, Martin M. Giles, Majeed Foad, Catalin D. Spataru and Steven G. Louie, Appl. Phys. Lett. 80, 4738 (2002).
32. Nobuyuki Sugii, Shigefumi Irieda, Jun Morioka and Taroh Inada, J. Appl. Phys. 96, 1 (2004).
33. Chihak Ahn, Nick Bennett, Scott T. Dunham and Nick E. B. Cowern, Phys. Rev. B. 79, 073201 (2009).
34. J. F. Ziegler and J. P. Biersack and M. D. Ziegler, SRIM - The Stopping and Range of Ions in Matter. SRIM Co. (2008).
35. W. E. Beadle, J. C. C. Tsai and R. D. Plummer, Quick reference manual for silicon integrated circuit technology, Bell Telephone Laboratories (1985).
36. E. H. Hall, American Journal of Mathematics , Vol. 2, No. 3, p. 287-292 (1879).
37. S. M. Sze, Physics of semiconductor devices, 2nd ed (Wiley, New york, 1976).
38. D. Bednarczyk and J. Bednarcczyk, Phys. Lett. 64A, 409 (1978).
指導教授 溫偉源(Wei-Yen Woon) 審核日期 2013-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明