博碩士論文 100222016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.119.107.161
姓名 胡幃傑(Wei-jie Hu)  查詢紙本館藏   畢業系所 物理學系
論文名稱 嘧啶混合冰晶之光化作用研究
相關論文
★ 冰晶光脫附率量測★ 鋅原子在3d游離閾下光吸收絕對截面測量
★ 16K下H2O+CO2+NH3混合冰晶的光脫附反應之傅氏紅外光譜★ H2O+ CO2+ NH3 混合冰晶的光脫附質譜分析
★ 純水、純水加二氧化碳及純水加氨三種不同 冰晶在氫氣微波放電管光源照射下的總離 子脫附率★ 鎂原子與氫分子在量子干涉效應下的光譜量測
★ 鎂蒸氣中光速的變異★ UV/EUV光子對星際冰晶的光化作用
★ 氦狹窄共振線的光譜分析和鹼土族原子在直流電場下的反應★ 極性分子與非極性分子對含CH4混合冰晶光化作用之影響
★ N2 + CH4 + H2O 混合冰晶在氫氣微波放電光源照射下的光化產物★ H2S+CO與H2S+CO2混合冰晶光化作用下含硫分子之生成機制
★ VUV/EUV對類冥王星冰晶之光化作用研究★ H2O 冰晶光子作用之溫度效應研究
★ CO2冰晶光脫附之溫度效應研究★ X射線與電子能量作用下星際冰晶的化學衍化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 於碳質隕石及球狀碳隕石中,蘊藏了與生命體相關的許多有機分子。而於其中檢測到核鹼基(建構DNA/RNA的基本分子)的存在,說明這些關乎生命體的分子可以在地球外的環境下被生成出來。而於近幾年的實驗結果以及理論計算推演之下,嘧啶加水的混合冰晶在經由真空紫外光的作用後,能生成嘧啶的相關氧化物,其中也包含了核鹼基-尿嘧啶。

本論文主要探討嘧啶加水的混合冰晶在天文環境中(14K,< 10-9 torr),於不同光子能量作用下的光化機制。光源分別以氫氣微波放電管產生的真空紫外光(VUV)以及同步輻射研究中心提供之極致紫外光(EUV),並挑選不同的光子能量範圍進行實驗:VUV(114−180 nm),白光(25−300 nm),He I (58.4nm),He II (30.4 nm)。使用紅外光譜儀量測嘧啶的光解速率以及光化產物的種類與生成速率。並以液相及氣相層析圖譜分析受光化作用後回溫至室溫的殘餘物質。

實驗結果中發現嘧啶相當容易受光子作用而被消耗,並且生成諸多已被觀測到的星際分子:CO、CO2、HNCO、OCN-、CN-、H2CO、HCONH2。並於所有實驗結果中明顯地偵測到尿嘧啶以及其前體4(3H)-pyrimidone的生成。而不同入射能量的光子作用對嘧啶光消耗以及光化產物的產率是相當地不同。這些結果說明原生有機分子是可以在VUV/EUV光子作用下生成,並且在被水包覆之下存留而抵達地球表面。
摘要(英) Carbon-rich meteorites and carbonaceous chondrites are found to contain many biologically relevant organic molecules. The presence of nucleobases (building block of DNA and RNA) in carbonaceous chondrites indicates that molecules of biological components can be formed in non-terrestrial environments via abiotic pathways. Recent laboratory experiments and ab initio calculations had already shown that the VUV irradiation of pyrimidine in H2O ices leads to the formation of oxidized pyrimidine derivatives, including the nucleobase uracil.

In this study, we focus on the different photo-energy effect on photon irradiation of pyrimidine in H2O-rich ice mixtures under astrophysical conditions (<10-9 torr, 14K).The vacuum ultra-violet (VUV) and extreme ultra-violet (EUV) photons provide by microwave-discharged hydrogen-flowed lamp (MDHL) and synchrotron radiation in several ranges: VUV (114−180 nm), 0th order light of synchrotron radiation beamline (25−300 nm), He I (58.4 nm), He II (30.4 nm). The photo-destruction rate of pyrimidine and photo-production rate of products were measured by FTIR spectroscopy. Afterwards, the photo-irradiated samples were warmed up to room temperature and the residues were analyzed by liquid and gas chromatography all together.

The results show that pyrimidine was easy to be depleted by VUV/ EUV photons, and formed many interstellar molecules such as: CO, CO2, HNCO, OCN-, CN-, H2CO, HCONH2, etc. All the photo-products in our experiments evidenced that 4(3H)-pyrimidone and uracil could be conclusively identified. The photo-destruction rate of pyrimidine and photo-production rate of products are found photon energy dependent. These results illustrate that the prebiotic components can be formed and survive in astrophysical environments which is subjected to VUV/EUV irradiation constantly. Finally they can be wrapped by H2O-rich ice matrix and fall down to Earth’s surface.
關鍵字(中) ★ 隕石
★ 核鹼基
★ 嘧啶
★ 星際冰晶
★ 光化作用
★ 紅外光譜
★ 真空紫外光
★ 極致紫外光
★ 氣相層析儀
★ 液相層析儀
★ 尿嘧啶
關鍵字(英) ★ meteorites
★ pyrimidine
★ nucleobases
★ interstellar ice
★ photolysis
★ infrared spectrum
★ VUV
★ EUV
★ gas chromatography
★ liquid chromatography
★ uracil
論文目次 目錄
第1章 緒論 …………………………………………………………………..1
1.1 生命的起源 ………………………………………………………1
1.2 起源的另一扇窗…………………………………………………..2
1.3 串起生命的長鏈 – DNA與RNA………………………………..4
1.4 太空環境下的生命探索…………………………………………..8
第2章 實驗原理……………………………………………………………...11
2.1 冰晶衍化機制……………………………………………………11
2.1.1 熱能……………………………………………………….11
2.1.2 高能粒子………………………………………….………11
2.1.3 光化作用…………………………………………………12
2.2.1 紅外光譜………………………………………………………14
2.2.2 分子振動模式…………………………………………………15
2.2.3 比爾定律………………………………………………………16
2.3 傅立葉紅外光譜儀…………………………………………...…17
2.3.1 麥克森干涉儀……………………………………………18
2.3.2 干涉圖譜轉換成紅外光譜圖……………………………20
2.4 薄膜干涉術……………………………………………………...21
2.5 四極質譜儀……………………………………………………...23
2.6 高效能液相層析………………………………………………...24
(High Performance Liquid Chromatography,HPLC)
2.7 氣相層析質譜分析儀…………………………………………...25
(Gas chromatography–mass spectrometry,GC-MS)
第3章 實驗儀器與架設……………………………………………………..27
3.1 太空環境之模擬………………………………………………...27
3.1.1 超高真空系統…………………………………………….27
3.1.2 低溫冷卻系統(cryostat)……………………………….28
3.1.3 基板…………………………………………………….…30
3.2 氣體預混系統(Gas Handing System) …………………………...30
3.3 傅立葉紅外光譜儀………………………………………………32
3.4 四極質譜儀………………………………………………………33
3.5 真空紫外光………………………………………………………33
3.5.1 微波氫氣放電管(MDHL) ………………………….…….33
3.5.2 同步輻射光源………..…………………………….……..37
3.6 雷射量測薄膜厚度技術…………………………………………39
3.7 高效能液相層析儀(HPLC) ……………………………………..40
3.8氣相層析質譜分析儀 (GC-MS) ………………………………...41
第4章 實驗過程與分析…………………………………………………….42
4.1 實驗方法…………………………………………………………43
4.1.1 前置作業與降溫………………………………………….43
4.1.2氣體預混與長冰過程……………………………………..43
4.1.3照光過程…………………………………………………..48
4.1.4 回溫過程………………………………………………….48
4.1.5 殘餘物質………………………………………………….48
4.2 實驗結果與分析-紅外光譜……………………………………...50
4.2.1 水冰晶中的嘧啶光消耗(Photo-depletion)現象………….50
4.2.2 光化產物………………………………………………….60
4.2.3 含氮之光化產物的生成機制…………………………….62
4.2.4不含氮之光化產物的生成機制…………………………..77
4.3殘餘物質實驗與分析…………………………………………….83
4.3.1 雷射冰晶厚度量測………………………………………...84
4.3.2殘餘物質的組成與分析…………………………………….86
4.3.3 HPLC結果與分析…………………………………………..87
4.3.4 GC-MS結果與分析………………………………………...95
第5章 應用與結論…………………………………………………………102
5.1 天文生物學應用………………………………………………..102
5.2 結論……………………………………………………………..103
參考文獻…………………………………………………………………….105
參考文獻 [1] Miller,S.T.(1953) A production of amino acid under possible primitive Earth conditions. Science 117:528-529.
[2] Stribling R., Miller, S.L. (1987) Energy yields for hydrogen cyanide and formaldehyde syntheses: the HCN and amino acid concentrations in the primitive ocean. Orig. Life Evol. Biosph.17: 261–273.
[3] Kasting, J.F. (1993) Earth’s early atmosphere. Science 259: 920–926.
[4] Kasting, J.F., Catling, D. (2003) Evolution of a habitable planet. Ann. Rev. Astron. Astrophys. 41:429–463.
[5] Dustin Trail (2011) The oxidation state of Hadean magmas and implications for early Earth’s atmosphere. Nature 480: 79–82.
[6] U. Meierhenrich, W. Thiemann, H. P., and H. Rosenbauer (1999) “Molecular parity violation via comets?.” Chirality 11:575 .
[7] Chyba, C., Sagan, C. (1992) Endogenous production, exogenous delivery and impact shock synthesis of organic molecules: an inventory for the origins of life. Nature 355:125-132.
[8] Hayaysu, R., Anders, E., Studier, M.H., amd Moore, L.P.(1975) Purines and triazines in the Murchison meteorite. Geochim. Cosmochim. Acta 39:471–488.
[9] Folsome, C.E., Lawless, J., Romiez, M., and Ponnamperuma, C.(1973) Heterocyclic compounds recovered from carbonaceous chondrites. Geochim. Cosmochim. Acta 37:455–465.

[10] van der Velden, W. and Schwartz, A.W.(1977) Search for purines and pyrimidines in the Murchison meteorite. Geochim.Cosmochim. Acta 41:961–968.
[11] Stoks, P.G. and Schwartz, A.W.(1979) Uracil in carbonaceous meteorites. Nature 282:709–710.
[12] Martins, Z., Botta, O., Fogel, M.L., Sephton, M.A., Glavin, D.P.,Watson, J.S., Dworkin, J.P., Schwartz, A.W., and Ehrenfreund (2008) Extraterrestrial nucleobases in the Murchison meteorite. Earth Planet. Sci. Letter 270:130–136.
[13] Bernstein, M. P., Dworkin, J. P., Sandford, S. A., Cooper, G. W., and Allamandola, L. J. (2002) Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues. Nature 416:401-403.
[14] G. M. Munoz Caro, U. J. Meierhenrich, W. A. Schutte, B. Barbier, A. Arcones Segovia, H. Rosenbauer, W. H.-P. Thiemann, A. Brack & J. M. Greenberg (2002) Amino acids from ultraviolet irradiation of interstellar ice analogues. Nature 416:403-406.
[15] Yu-Jung Chen (2008) 國立中央大學物理系博士論文
[16] Simon, M.N. and Simon, M.(1973) Search for interstellar acrylonitrile,pyrimidine, and pyridine. Astrophys. J. 184:757–762.
[17] Kuan, Y-J., Yan, C.-H., Charnley, S.B., Kisiel, Z., Ehrenfreund, P.,and Huang, H.-C.(2003) A search for interstellar pyrimidine.Month. Not. R. Astron. Soc. 345:650–656.
[18] Charnley, S.B., Kuan, Y.-J., Huang, H.-C., Botta, O., Butner,H.M., Cox, N., Despois, D., Ehrenfreund, P., Kisiel, Z., Lee,Y.-Y., Markwick, A.J., Peeters, Z., and Rodgers, S.D. (2005)Astronomical searches for nitrogen heterocycles. Adv. Space Res. 36:137–145.
[19] Allamandola, L.J., Tielens, A.G.G.M., and Barker, J.R. (1989)Interstellar polycyclic aromatic hydrocarbons—the infrared emission bands, the excitation emission mechanism, and the astrophysical implications. Astrophys. J., Suppl. Ser. 71:733–775.
[20] Alessandra Ricca, Charles W. Bauschlicher, Jr. and E. L. O. Bakes (2001) A Computational Study of the Mechanisms for the Incorporation of a Nitrogen Atom into Polycyclic Aromatic Hydrocarbons in the Titan Haze. Icarus 154:516–521
[21] Sandford, S.A., Bernstein, M.P., and Allamandola, L.J. (2004) The mid-infrared laboratory spectra of naphthalene (C10H8) in solid H2O. Astrophys. J. 607:346–360.
[22] Michel Nuevo, Stefanie N. Milam, Scott A. Sandford,Jamie E. Elsila and Jason P. Dworkin (2009) Formation of Uracil from the Ultraviolet Photo-Irradiation of Pyrimidine in Pure H2O Ices. Astrobiology 9:683-695.
[23] C. Y. Robert Wu and D. L. Judge, Bing-Ming Cheng, Wen-Hao Shih, Tai-Sone Yih, and W. H. Ip (2002) Extreme Ultraviolet Photon-Induced Chemical Reactions in the C2H2–H2O Mixed Ices at 10 K. Icarus 156:456–473.
[24] Peter Jennisk and David F.Blake(1994)Structural transitions in amorphous water ice and astrophysical implications. SCIENCE 265.
[25] P.A Gerakines et al.(1996)Ultraviolet processing of interstellar ice analogs. A&A 312:289-305.
[26] Y.-J. Chen, K.-J. Chuang, G. M. Muñoz Caro, M. Nuevo, C.-C. Chu, T.-S. Yih, W.-H. Ip, and C.-Y. R. Wu. (2014) Vacuum ultraviolet emission spectrum measurement of a microwave-discharge hydrogen-flow lamp in several configurations: Application to photodesorption of CO ice. APJ 481:15-28.
[27] Gerard Thuillierl,Linton Floyd ,Thomas N. Woods,Richard Cebula, Ernest Hilsenrath, Michel Hersel,and Dietrich Labs(2005)Solar Irradiace Reference Spectrum:171-194.
[28] Herve Cottin et al. (2003) Photodestruction of relevant interstellar molecule in ice mixtures. APJ 590:874-881.
[29] J. S. Mathis, P. G. Mazger, and N. Panagia (1983) Interstellar radiation filed and dust temperatures in the diffuse interstellar matter in giant molecular clouds. A&A 128:212-229.
[30] Sheo S. Pradad, and Shankar P. Tarafdar (1983) UV radiation field inside dense clouds : Its possible existence and chemical implications. APJ 267:603-609.
[31] Z. Peeters, O. Botta, S. B. Charnley, Z.Kisiel, U.-J. Kuan, and P. Ehrenfreund (2005) Formation and photostability of N-heterocycles in space. A&A 433:583-590.
[32] M. S. Westley, R.A. Baragiola, R.E. Johnson, and G. A. Baratta (1995) Photodesroption from low-temperature water ice in interstellar and circumsolar grains. Nature 373:405-407.
[33] T. L. Cottrell(1958)The Strengths of Chemical Bonds, 2nd ed.
[34] Itikawa, Y., Ichimura, K., Onda, K., Sakimoto, K., Takayanagi, K., Hatano, Y., Hayashi, M., Nishimura, H., and Tsurubuchi, S. (1989) Cross sections for collisions of electrons and photons with oxygen molecules. J Phys Chem Ref Data 18:23–42.
[35] Bera, P.P., Nuevo, M., Milam, S.N., Sandford, S.A., and Lee, T.J. (2010) Mechanism for the abiotic synthesis of uracil via UV-induced oxidation of pyrimidine in pure H2O ices under astrophysical conditions. J Chem Phys 133:104303
[36] Stephens, J.A. and McKoy, V. (1987) Photoionization of the valence orbitals of OH. J Chern Phys 88:1737–1742.
[37] Ruscic, B., Wagner, A.F., Harding, L.B., Asher, R.L., Feller, D., Dixon, D.A., Peterson, K.A., Song, Y., Qian, X., Ng, C.-Y., Liu, J., Chen, W., and Schwenke, D.W. (2002) On the enthalpy of formation of hydroxyl radical and gas-phase bond dissociation energies of water and hydroxyl. J Phys Chem A 106:2727–2747.
[38] Bernstein, M.P., Sandford, S.A., and Allamandola, L.J. (2000) H, C, N, and O isotopic substitution studies of the 2165 cm-1 (4.62 µm) “XCN” feature produced by UV photolysis of mixed molecular ices. Astrophys J 542:894–897.
[39] R. L. Hudson, M. H. Moore, and P. A. Gerakines (2001) The formation of cyanate ion (OCN-) in interstellar ice analogs. APJ 500:1140-1150.
[40] P. Theule et al. (2011) Kinetics of OCN- and HOCN formation from the HNCO + H2O thermal reaction in interstellar ice analogs. A&A 530 A96:1-8.
[41] MAX P. BERNSTEIN, SCOTT A. SANDFORD, AND LOUIS J. ALLAMANDOLA (1997) The Infrared Spectra of Nitriles and Related Compounds Frozen in Ar and H2O. APJ 472:932-942.
[42] Naoki Watanabe, Akihiro Nagaoka, Takahiro Shiraki, and Akira Kouchi (2004) Hygrodenation of CO on pure solid CO and CO-H2O mixed ice. APJ 616:638-642.
[43] F. A. van Broekhuizen , J. V. Keane, and W. A. Schutte (2004) Aquantitative analysis of OCN- formation in interstellar ice analogs. A&A 415:125-436.
[44] Stolkin, I., Ha, T.-K., and Günthard, Hs.H. (1977) N-methylmethyleneimine and ethylideneimine: gas and matrix-infrared spectra, AB initio calculations and thermodynamic properties. Chem Phys 21:327–347.
[45] R. L. Hudson and M. H. Moore (1999) Laboratory studies of formation of methanol and other organic molecules by water + carbon monoxide radiolysis: Relevance to comets, icy satellites, and interstellar ices. Icarus 140:451-461.
[46] F. Mispelaer, P. Theule, F. Duvernay, P.Roubin, and T. Chiavassa (2012) Kinetics of OCN formation from the HNCO+NH3 solid state thermal reaction.A&A 540 A40:1-8.
[47] M.S. Lowenthal, R. K. Khanna, M. H. Moore (2001) Infrared spectrum of solid isocyanic acid (HNCO):vibrational assignments and integrated band intensities. Acta 58:73-78.
[48] M.H. Moore, R.L. Hudson (2003) Infrared study of ion-irradiated N2-dominated ices relevant to Triton and Pluto: formation of HCN and HNC. Icarus 161:486-500
[49] P. A. Gerakines, M. H. Moore , and R. L. Hudson (2004)
Ultraviolet photolysis and proton irradiation of astrophysical ice analogs containing hydrogen cyanide. Icarus 170:202-213.
[50] Ching-yi Huang(2013)國立中央大學天文系碩士論文
[51] M. H. Moore and R. L. Hudson (2005) Production of complex molecules in astrophysical ices. IAU 231:247-260.
[52] Shimanouchi, T. (1972) Tables of molecular vibrational frequencies consolidated, Vol. I, National Bureau of Standards, pp 1–160.
[53] Delwiche, J., Gochel-Dupuis, M., Collin, J.E., and Heinesch, J. (1993) High resolution HeI photoelectron spectrum of acrylonitrile. J Electron Spectrosc Relat Phenom 66:65–74.
[54] McCluskey, M. and Frei, H. (1993) Transfer of methylene from ketene to nitric oxide by photoexcitation of reactant pairs in solid argon below the CH2:C:O dissociation limit. J Phys Chem 97:5204–5207.
[55] R. L. Hudson, M. H. Moore (2004) Reactions of nitrile in ices relevant to Titan, comets, and the interstellar medium: formation of cyanate ion, Ketenimines, and isonitriles. Icarus 172:466-478.
[56] P. A. Gerakines, W.A. Schutte, and P. Ehrenfreund (1996) Ultraviolet processing of interstellar ice analogs. A&A 312:289-305.
[57] H. C. Lu, H. K. Chen, B. M. Cheng, Y. P. Kuo, Ogilvie, J. F.(2005) Spectra in the vacuum ultraviolet region of CO in gaseous and solid phases and dispersed in solid argon at 10 K. J. Phys. B: At. Mol. Opt. Phys. 38:3693-3704.
[58] M. H. Moore and R. L. Hudson (1998) Infrared Study of Ion-Irradiated Water-Ice Mixture. ICARUS 135:518–527
[59] N. Watanabe, O. Mouri, A. Nagaoka, T. Chigai, and A. Kouchi (2007) Laboratory simulation of competition between hydrogenation and photolysis in the chemical evolution of H2O-CO ice mixetures. The Astrophysical Journal, 668:1001–1011.
[60] B. deB. Darwent. (1970) Bond dissociation energies in simple molecules. Washington D.C.: U.S. National Bureau of Standards. 2nd ed. p23.
[61] Naoki Watanabe, Akihiro Nagaoka, Takahiro Shiraki, and Akira Kouchi (2004) Hygrodenation of CO on pure solid CO and CO-H2O mixed ice. APJ 616:638-642.
[62] M. S. Westley G. A. Baratta and R. A. Baragiola (1998) Density and index of refraction of water ice films vapor deposited at low temperatures. J. Chem. Phys. 8:3321-3326
[63] Michel Nuevo, Stefanie N. Milam, and Scott A. Sandford (2013) Nucleobases and prebiotic molecules in organic residues produced from the ultraviolet photo-irradiation of pyrimidine in NH3 and H2O+NH3 Ices. ASTROBIOLOGY Volume 12, Number 4:295-314.
[64] S.M. Horst et al. (2012) Formation of Amino Acids and Nucleotide Bases in a Titan Atmosphere Simulation Experiment. Astrobiology 12 : 809-817.
[65] Hsiao-Chi Lu, Hong-Kai Chen, Bing-Ming Cheng, J.F. Ogilviec(2008)Absorption spectra in the vacuum ultraviolet region of small molecules in condensed phases.Spectrochimica Acta Part A 71:1485-1491.
指導教授 易台生 審核日期 2014-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明