博碩士論文 100222022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.226.245.48
姓名 蔡明政(Ming-Jang Tasi)  查詢紙本館藏   畢業系所 物理學系
論文名稱 克爾-紐曼黑洞下的成對產生
(Spontaneous Pair Production in Kerr-Newman Black Holes)
相關論文
★ 由Quintessencec和Phantom組成雙純量場的暗能量模型★ 自引力球殼穿隧的Hawking輻射
★ Gauss-Bonnet 重力理論中穿隧效應的霍金輻射★ SL(4,R)理論下的漸近平直對稱轉換
★ 外加B-場下於三維球面上之土坡弦及銳牙弦★ 克爾-紐曼/共形場中的三點關聯函數
★ 時空的熱力學面向★ 四維黑洞的全息描述
★ 萊斯納-諾德斯特洛姆黑洞下的成對產生★ 自旋粒子在萊斯納-諾思通黑洞的生成
★ Pseudo Spectral Method for Holographic Josephson Junction★ Holographic Josephson Junction in Various Dimensions
★ Characteristics of Cylindrically Symmetric Spacetimes in General Relativity★ Force Free Electrodynamics in Extremal Kerr-Newman Black Holes
★ Schwinger Effect in Near Extremal Charged Black Holes★ Thermodynamics of Scalar Field in Schwarzschild Black Holes
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文主要是研究帶電跟角動量的時空背景下也就是KN黑洞 粒子成對產生發射到無窮遠處

首先透過量子場論在彎曲空間下討論真空中粒子如何產生

在彎曲空間中有Bogoliubov關係式連結時空中不同兩點的狀態 係數B並不消逝而有粒子產生

然後透過計算通量的方式

告訴帶電純量場在這樣的幾何下如何產生並發射出來

取近極端近事件視界極限

我們可以得到近極端近事件視界的KN黑洞的幾何

由通量守恆可以得到一個類比於Bogoliubov關係式的式子 其中B跟beta在粒子生成扮演重要角色

分別考慮極端KN黑洞 和 近極端KN黑洞 計算粒子在視界附近穿隧出來射向無窮遠的通量
摘要(英) In this thesis we mainly study the production of pair particles carrying energy, electricity and angular momentum of the background, which is a Kerr-Newman (KN) black hole. Firstly we review the quantum field theory in curved spacetime to discuss the vacuum particle production by connecting quantum field at two different points in spacetime via the Bogoliubov relation. More precisely, the non-vanishing $B$ coefficients indicates the appearance of the particle production.



We then analysis the charged scalar production appearing at the near-horizon region of near-extremal KN black hole via the ratios of the fluxes of in- and out-going propagating modes at two boundaries. From the conservation of flux one can obtain a expressions analogy to the Bogoliubov relation. Thus the Bogoliubov coefficients, consequently the essential physical quantities, such as vacuum persistence, mean number of production and absorption cross section, can be obtained.

關鍵字(中) ★ 克爾-紐曼黑洞下的成對產生
★ 彎曲時空中的量子場論
關鍵字(英) ★ Spontaneous Pair Production in Kerr-Newman Black Holes
★ Quantum Field in Curved Spacetime
★ Particle Creation by Gravitational Fields
★ Near Horizon Near Extremal Limit
論文目次 1 Introduction 1

2 Quantum Field in Curved Spacetime 3

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Canonical Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 From Hilbert Space to Fock Space . . . . . . . . . . . . . . . . . . . . 6

2.4 Particle Creation by Gravitational Fields . . . . . . . . . . . . . . . . 8

2.4.1 Real scalar eld . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.2 Complex scalar eld . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Boundary Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Spontaneous Pair Production in Kerr-Newman Black Holes 15

3.1 Kerr-Newman Black Holes . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Near Horizon Near Extremal Limit . . . . . . . . . . . . . . . . . . . 18

3.3 Charged Scalar Field in NHEKN Background . . . . . . . . . . . . . 19

3.4 Pair Production in Extremal KN Black Holes . . . . . . . . . . . . . 21

3.4.1 Outer Boundary Condition . . . . . . . . . . . . . . . . . . . . 23

3.4.2 Inner Boundary Condition . . . . . . . . . . . . . . . . . . . . 24

3.5 Pair Production in Near-Extremal Case . . . . . . . . . . . . . . . . . 25

3.5.1 Boundary Condition . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 Pair Production in KN and RN Black Holes . . . . . . . . . . . . . . 27

3.7 Cosmic Censorship Condition . . . . . . . . . . . . . . . . . . . . . . 28

4 Conclusion 30

A Properties of Some Special Functions 32

A.1 Whittaker Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

A.2 Hypergeometric Functions . . . . . . . . . . . . . . . . . . . . . . . . 33

A.3 Gamma Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
參考文獻 [1] P. K. Townsend, Black holes: Lecture notes," gr-qc/9707012.

[2] T. Jacobson, Introduction to quantum elds in curved space-time and the Hawking

e ect," gr-qc/0308048.

[3] C.-M. Chen, S. P. Kim, I.-C. Lin, J.-R. Sun and M.-F. Wu, Spontaneous Pair

Production in Reissner-Nordstrom Black Holes," Phys. Rev. D 85, 124041 (2012)

[arXiv:1202.3224 [hep-th]].

[4] J. M. Maldacena, The Large N limit of superconformal eld theories and supergravity,"

Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113

(1999)] [arXiv:hep-th/9711200].

[5] I. Bredberg, C. Keeler, V. Lysov and A. Strominger, Cargese Lectures on the

Kerr/CFT Correspondence," arXiv:1103.2355 [hep-th].

指導教授 陳江梅(Chiang-Mei Chen) 審核日期 2015-8-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明