博碩士論文 100222030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:13.59.218.147
姓名 蔡芳英(Fang-Ying Tsai)  查詢紙本館藏   畢業系所 物理學系
論文名稱 Search for Pair Production of t*-> t + photon : Estimation of Photon Purity and Study of the Top and W Mass Resolution
(Search for Pair Production of t*-> t + photon : Estimation of Photon Purity and Study of the Top and W Mass Resolution)
相關論文
★ 7 TeV 和2.76 TeV 質子對撞下,光子散射截面積的測量★ 以大型強子對撞機裡的緊湊渺子線圈偵測器尋找重夸克在半輕子頻道衰變成頂夸克和光子
★ Search for Z′→Zh→llbb in pp Collisions at √s =8 TeV Using the CMS Detector at the LHC★ Search for heavy resonances decaying into a Z boson and a Higgs boson in the 2l2b final state in pp collisions at √s = 13 TeV
★ 從質子質子對撞在質量中心能量 13 兆電子 伏特利用緊湊渺子偵測器尋找重粒子衰變 到一對希格斯粒子於四個底夸克最終態★ Study of the b-tagging Scale Factor using the tt ̅ Events from pp collisions at √s =13 TeV with the CMS Detector
★ 在大型強子對撞機的緊湊渺子線圈偵測器,使用13兆電子伏特的質子-質子對撞尋找會衰變到一對希格斯玻色子且最終狀態為四個底夸克的重共振態★ 在緊湊渺子線的質心對撞能量為 13 兆電子伏特的數據裡, 用字母法輔以突起搜尋之方法來尋找類 Z 玻色子衰變為 Z 玻色子及希格斯粒子在衰變為輕子與底垮克
★ 在與希格斯玻色子有關聯的暗物質搜索中去測量深度雙底夸克標記校正因子的誤判率★ The Study of the Di-Higgs Production via Vector Boson Fusion Channel for the Phase II CMS at √? =14 TeV
★ 於尋找單希格斯粒子中研究噴流子結構可觀測量★ The analysis of the TASEH CD102 data
★ 找尋具有長生命週期新粒子的物理模型所預測的暗物質★ Toward discovering the low-mass dark matter: Constraints on Searches of Low-mass Weakly Interacting Massive Particle (WIMP) with Earth Attenuation Effect incorporated && Exploring the physics of germanium internal amplification for low-energy detection
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) Randall-Sundrum模型提供一個合理的方式解釋新物理和Higgs Boson重量的超大修正,並且預測了一個最輕自旋數為3/2的Kaluza-Klein粒子。我們利用LHC的能量尺度找尋經由pair-production產生的帶有自旋3/2的右旋頂垮克。本篇論文在19.6 fb^(-1)的質子質子對撞數據且總碰撞能量為8 TeV下,利用χ^2 sorting的方法重建t* 粒子, 此方法包含了找mass resolution的值和neutrino在z方向動量正確率最高的解。我們可以利用 χ^2和 Likelihood fitter 去估計data裡那些從標準模型來的主要背景干擾數量。我們利用質心能量在7TeV且數量為2.4到35.9pb^(-1)的單光子數據,來測試這兩種估計方法的正確性。
摘要(英) Randall-Sundrum model provides a reasonable way to explain the hierarchy problem and it predicts the lightest spin-3/2 Kaluza-Klein particle. We are searching for the singlet top of spin-3/2 through pair-production that may be produced at LHC energies. This thesis presents the χ^2 sorting method, which includes studies of mass resolution and the probability of getting correct solution of neutrino pz to reconstruct spin-3/2 particle at √s=8 TeV using 19.6 fb^(-1)of proton-proton collision data collected by CMS. In order to estimate dominated background in data, we also provide two methods, χ^2 fitter and Likelihood fitter. These methods use inclusive photon at √s=7 TeV and the data sample corresponds from 2.4 to 35.9 pb^(-1).
關鍵字(中) ★ 自旋3/2頂垮克 關鍵字(英) ★ pair production of t* to top+photon
論文目次 Content
摘要 I
Abstract II
誌謝 III
Chapter 1 Introduction 1
1.1 The Standard Model 1
1.2 Search of Heavy Quark t* 3
1.2.1 The Randall-Sundrum Model 3
1.2.2 Basics of Kaluza-Klein theory 5
1.2.3 Spin-3/2 excitations in the R-S Model 7
Chapter 2 CMS Detector in LHC 11
2.1 The Large Hadron Collider 11
2.2 The Compact Muon Solenoid Detector 12
2.2.1 Tracker 15
2.2.2 Electromagnetic Calorimeter 17
2.2.3 Hadronic Calorimeter 18
2.2.4 Muon Chamber 19
2.2.5 Magnet system 20
Chapter 3 Reconstruction of Physics Objects 21
3.1 Software Setup 21
3.1.1 Event Generator 21
3.1.2 Detector Simulation 22
3.1.3 Trigger Simulation 22
3.2 Final-State Objects Reconstruction 22
3.3 Photon Reconstruction 24
3.3.1 Photon Selection Variables 24
3.3.2 Track Finding for Conversion 26
3.4 Electron Reconstruction 27
3.4.1 Electron Selection Variables 28
3.4.2 Photon Conversion Rejection 29
3.5 Muon Reconstruction 30
3.6 Jet Reconstruction 30
Chapter 4 Analysis 32
4.1 Monte Carlo Simulation of Background 32
4.1.1 Estimation of Inclusive Photon 34
4.1.2 Photon Purity 39
4.2 Mass χ2 Sorting 43
4.2.1 Longitudinal Momentum of the Neutrino 43
4.2.2 Mass Resolution 45
Chapter 5 Conclusion 50
Appendix 51
Efficiency 51
Mass Resolution 52
Reference 57
參考文獻 Reference
[1] CPEP Contemporary Physics Education Project.
[2] T. Kaluza, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) K1, 966 (1921); O. Klein, Z. Phys. 37, 895 (1926).
[3] J.Polchinski, String Theroy, Cambridge, Vo1. I, chap. 8: Toroidal com-pactification and T-duality (1995).
[4] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999) [arXiv: hep-ph/9905221]; Phys. Rev. Lett. 83, 4690 (1999) [arXiv: hep-th/9906064].
[5] T. Gherghetta and A. Pomarol, Nucl. Phys. B 586, 141 (2000) [arXiv: hep-ph/0003129].
[6] Copyright 2005 The New York Times Company.
[7] S. B. Giddings, S. Kachru and J. Polchinski, Phys. Rev. D 66 (2002) 106006 [arXiv: hep-th/0105097].
[8] Physics searches at the LHC. arXiv: 0912.3259 [hep-ph] 4 Sep 2010.
[9] Maxime Gabella. The Randall-Sundrum Model. June 2006 IPPC, EPFL.
[10] Babiker Hassanain, John March-Russell and J. G. Rosa, “On the possibility of light string resonances at the LHC and Tevatron from Randall-Sundrum throats”[arXiv: 0904.4108v2]
[11] P. W. Higgs, “Broken symmetries and the masses of gauge bosons,” Phys. Rev. Lett., vol. 13, pp. 508-509, Oct 1964. 1.1
[12] P. Higgs, “Broken symmetries, massless particles and gauge fields,” Physics Letters, vol. 12, no. 2, pp. 132-133, 1964. 1.1
[13] CERN, “The CERN accelerator complex.” http://public.web.cern.ch/public/en/research/AccelComplex-en.html,2012.
[14] The CMS Collaboration, “The CMS experiment at the CERN LHC,” Journal of Instrumentation, vol. 3, 2008. 2.2
[15] G. Bayatian et al., “CMS Physics Technical Design Report Volume I: Detector Performance and Software,” Technical Design Report CMS, 2006.
[16] The CMS Collaboration, The CMS tracker system project: Technical Design Report. Technical Design Report CMS, Geneva: CERN, 1997. 2.2.3
[17] The CMS Collaboration, The CMS tracker: addendum to the Technical Design Report. Technical Design Report CMS, Geneva: CERN, 2000. 2.2.3
[18] The CMS ECAL: Technical Design Report. Technical Design Report, Geneva: CERN, December 1997. 2.2.4
[19] P.Bloch, R. Brown, P.Lecoq, and H. Rykaczewski, Changes to CMS ECAL electronics: addendum to the Technical Design Report. Techical Design Report CMS, Geneva: CERN, 2002. 2.2.4
[20] CMS Collaboration, CERN/LHCC 20-016(2006), CMS TDR 8.1
[21] The CMS Collaboration, The CMS hadron calorimeter project: Technical Design Report. Technical Design Report CMS, Geneva: CERN, 1997. 2.2.5
[22] J. Damgov and S. Kunori, private commuication
[23] Efe Yazgan, Thesis, Department of Physics, Middle East Technical University (2007)
[24] The CMS Collaboration, The CMS muon project: Technical Design Report. Technical Design Report CMS, Geneva: CERN, 1997 2.2.6
[25] C. D. Jonew et al., “The new CMS data model and framework,” in CHEP’06 Conference Proceedings. 2006.
[26] T. Sjostrand, S. Mrenna and P. Skands, “PYTHIA 6.4 Physics and Manual,” JHEP 0605 (2006).
[27] S. Agostinelli et al., “Geant4- A Simulation Toolkit,” Nuclear Instruments and Methods A 506 (2003).
[28] S. Agostinelli et al., GEANT4: A simulation toolkit, Instrum. and Methods, A506:250-303, 2003.
[29] S. Abdullin et al., “The Fast Simulation of the CMS Detector at LHC,” CMS Conference Report 297 (2010).
[30] E. Meschi et al., Electron Reconstruction in the CMS Electronmagnetic. Calorimeter, CMS Note 2001/034.
[31] P. Fayet, Nucl. Phys. B 90, 104 (1975).
[32] N. Marinelli. CMS Note, 2006/005, 2006/
[33] Marinelli N., Kolberg T., Jessop C., Ruchti, R. CMS Analysis Note, 2008/102, 2008.
[34] The CMS Collaboration. CMS Physics Analysis Summary, 2010/005, 2010.
[35] W. Adam, R. Fruhwirth, A. Strandlie, T. Todorov, Reconstruction of electrons with the Gaussian-sum filter in the CMS tracker at the LHC, J. Phys. G: Nucl. Part. Phys. 31 (2005) N9-N20.
[36] C. Charlot, C. Rovelli, Y. Sirois, Reconstruction of Electron Tracks Using Gaussian Sum Filter in CMS, CMS Analysis Note AN-2005-011 (2006).
[37] M. Cacciari, G. P. Salam, and G. Soyez, “The Anti-k(t) jet clustering algorithm,” JHEP 0804 (2008) 063, arXiv: 0802.1189 [hep-ph].
[38] J. Alwall, P. Demin, S. de Visscher, R. Frederix, M. Herquet, et al.,” MadGraph/MadEvent v4: The New Web Generation,” JHEP 0709 (2007) 028, arXiv: 0706.2334 [hep-ph].
[39] S.Frixion, P. Nason, and G. Ridolfi, “A Positive-weight next-to-leading-order Monter Carlo for heavy flavor hadroproduction,” JHEP 0709 (2007) 126.
[40] S. Alioli, P. Nason, C. Oleari, and E. Re, “NLO single-top production matched with shower in POWHEG: s- and t-channel contributions,” JHEP 0909 (2009) 111, arXiv: 0907.4076 [hep-ph].
[41] E. Re, “Single-top Wt-channel production matched with parton showers using the POWHEG method,” Eur.Phys.J. C71 (2011) 1547, arXiv: 1009. 2450 [hep-ph].
[42] R. and Fruhwirth. Application of kalman _ltering to track and vertex _tting. http://www.sciencedirect.com/science/article/pii/0168900287908874, 1987.
指導教授 余欣珊(Shin-Shan Yu) 審核日期 2013-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明