博碩士論文 100222031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:54.172.234.236
姓名 王景輝(Jing-Hui Wang)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(hydrodynamic spreading of forces from bacterial carpet)
相關論文
★ 細菌地毯微流道中的次擴散動力學★ Role of strain in the solid phase epitaxial regrowth of dopant and isovalent impurities co-doped silicon
★ What types of defects are created on supported chemical vapor deposition grown graphene by scanning probe lithography in ambient?★ 以掃描式電容顯微鏡研究硼離子在矽基板中的瞬態增強擴散行為
★ 應變及摻雜相互對以磷離子佈植之碳矽基板的固態磊晶成長動力學之研究★ 雜質在假晶型碳矽合金對張力之熱穩定性影響
★ Revisiting the role of strain in solid-phase epitaxial regrowth of ion-implanted silicon★ 利用選擇性參雜矽基板在石墨稀上局部陽極氧化反應
★ Thermal stability of supersaturated carbon incorporation in silicon★ 氧化銅上的石墨烯在快速化學氣相沉積過程中的成核以及成長動力學
★ Reduction dynamics of locally oxidized graphene★ 微小游泳粒子在固定表面的聚集現象
★ Role of impurities in semiconductor: Silicon and ZnO substrate★ The growth of multilayer graphene through chemical vapor deposition
★ Characteristic of defect generated on graphene through pulsed scanning probe lithography★ non
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在這篇論文中,我們藉由光學鑷子的特性來探討細菌地毯產生的力在微流道裡是如何透過流體傳播的問題。在低雷諾數的狀況下,細菌透過鞭毛的運動達成自身的生物趨向性。在此鞭毛攪動流體的過程中,此運動透過流體的傳播會造成鄰近細菌運動行為上的改變。而透過流體的交互作用,群聚的細菌或鞭毛也有可能在空間或時間上產生大尺度的同步運動。細菌鞭毛的同步運動所產生的力透過流體傳播所產生的影響即是我們這篇論文所研究的重點。我們量測的細菌地毯是由一群高濃度單鞭毛細菌(VIO5和NMB136)在載玻片上以沉積的方式所形成的二維排列。VIO5(CW+CCW+flicking)和NMB136(CCW)的鞭毛轉速可以藉由緩衝液中的鈉離子濃度來做為調整,大大提升了實驗的複雜性。在此實驗中,我們藉由調控光學鑷子對粒子的束縛強度,可以觀察出粒子在流場下的脫離強度,進而推測出對應的力的訊號(~pN)。藉由光學鑷子的空間操控性,我們量測不同轉速與旋轉方向的地毯在垂直方向上的力的空間分佈。我們觀察到VIO5和NMB136所構成的細菌地毯分別產生了推力(遠離地毯表面)和吸力。透過曲線擬合,我們發現兩種地毯鞭毛所造成的力透過流體的傳播在空間上皆滿足1/r3的行為。藉由此流場的分佈,我們可以合理的推測此1/r3的行為有可能來自於緊密細菌排列所導致的邊界效應,進而造成流線局部性的扭曲。在另一方面,我們觀察到當細菌鞭毛轉速到達某個臨界值時,細菌地毯所產生的力會突然驟升,造成一非線性的力的變化。此力隨著鞭毛轉速的驟升很有可能與細菌鞭毛間的群體運動有關。此研究提升了生物在微流道傳輸裡應用的可行性,也提供了一個適當的活體生物與工程之間的合作平台。
摘要(英) We investigate the hydrodynamic spreading force generated from bacterial carpets in microfluidic channel. The bacterial carpets are formed by single-polar flagellated bacteria on poly-lysine treated glass substrate in the closed channel. Two distinctive bacterium strains (NMB136 and VIO5) with Na+ driven flagellar motors are employed respectively. We adopt a particle assay based on optical tweezers, which is capable of conducting the resolution of force measurement up to pN. Through tuning down the trapping power, one can qualitatively characterize the external force from the trajectories of particles. Subsequently, varying heights (10 to 20 μm) and different Na+ concentrations (30 to 300 mM) are performed. As a result, attractive and repulsive forces are respectively detected above 10 μm from bacterial carpets due to the boundary effect and propelling forces from collective flagellar rotations. We found that a collapse of normalized curves into r-3 curve, which implies the appearance of a quadruple-like behavior. Meanwhile, it is found that the force strengths increase abruptly upon the threshold rotational rate, showing a nonlinear transition with a counter-intuitive physical description. Synchronization of flagella is the one of possible candidates that provides more appropriate explanation. In summary, we demonstrate a force spreading measurement above bacterial carpet in microfluidic channel. The boundary effects and collective rotations characterize the resultant force patterns. Moreover, the onset of the flagella synchronization probably accounts for the transition-like behavior, which implies more complex mechanism involved in this system. Our work presents a novel microfluidic manipulation and provides suitable platforms for microbial-fluid interface engineering.
關鍵字(中) ★ 細菌地毯
★ 流體力學
★ 群聚行為
關鍵字(英) ★ bacterial carpet
★ hydrodynamic interaction
★ collective motion
論文目次 Introduction...............................................1
2 Background..............................................5
2.1 Collective Behaviors...................................6
2.1.1 Spatiotemporal pattern formations....................8
2.1.2 Specific temporal pattern – Synchronization.........10
2.1.3 Theoretical simulation model of microfluidic rotor array.....................................................13
2.2 Life at Low Reynolds Number...........................17
2.2.1 Flow at low Reynolds number.........................18
2.2.2 Characteristics of bacterial swimming patterns......20
2.2.3 Hydrodynamic interactions in the vicinity of plane boundary..................................................23
2.3 Optical Trapping......................................28
2.3.1 Principles of optical trapping......................28
3 Experimental Setup and Measurement.....................31
3.1 Sample Preparation....................................31
3.1.1 Cell culture........................................32
3.1.2 Micro-channel fabrication...........................33
3.1.3 Tracer particle.....................................34
3.1.4 Bacteria carpet formation...........................34
3.2 Setup and Methods.....................................36
3.2.1 Experimental setup..................................37
3.2.2 Force calibration...................................38
3.2.3 Force measurement...................................39
3.2.4 Optical damage......................................40
4 Result and Discussion..................................42
4.1 Characteristics of force spreading patterns...........42
4.2 Flagellum status in the bacterial carpet..............44
4.3 Hydrodynamic spreading above the bacterial carpet.....45
4.4 A nonlinear transition to flow strength...............47
5 Conclusion.............................................51
Bibliography..............................................53
參考文獻 [1] Tamás Vicsek and Anna Zafeiris, “Collective motion” Phys. Reports 517, 71-140. (2012)
[2] Michael Cross and Henry Greenside, “Pattern Formation and Dynamics in Nonequilibrium Systems” (2009)
[3] Donald L. Koch and Ganesh Subramanian, “Collective Hydrodynamics of Swimming Microorganisms: Living Fluids” Annu. Rev. Fluid Mech. 43:637-59 (2011)
[4] Min Jun Kim and Kenneth S. Breuer, “Microfluidic Pump Powered by Self-Organizing Bacteria” Small 4, NO.1, 111-118 (2008)
[5] Arkady Pikovsky, Michael Rosenblum and Jürgen Kurths, “Synchronization: A Universal Concept in Nonlinear Sciences” (2001)
[6] Ingmar H. Riedel, Karsten Kruse and Jonathon Howard, “A Self-Organized Vortex Array of Hydrodynamically Entrained Sperm Cells” Science 309, 300 (2005)
[7] Nicholas Darnton, Linda Turner, Kenneth Breuer and Howard C.Berg, “Moving Fluid with Bacterial Carpets” Biophys. J. 86, 1863-1870 (2004)
[8] Nariya Uchida and Ramin Golestanian, “Synchronization and Collective Dynamics in a Carpet of Microfluidic Rotors” Phys. Rev. Lett. 104, 178103 (2010)
[9] Ramin Golestanian, Julia M. Yeomans and Nariya Uchida, “Hydrodynamic Synchronization at low Reynolds number” Soft Matter, 7, 3074 (2011)
[10] Eric Lauga and Thomas R Powers, “The hydrodynamics of swimming microorganisms” Rep. Prog. Phys. 72 (2009)
[11] Howard C. Berg, “Motile Behavior of Bacteria” Phys. Today 53 (1), 24 (2000)
[12] Li Xie, Tuba Altindal, Suddhashil Chattopadhyay and Xiao_lun Wu, “Bacterial flagellum as a propeller and as a rudder for efficient chemotaxis” Proc. Natl. Acad. Sci. USA 108, 2246 (2011)
[13] Yoshiyuki Sowa, Hiroyuki Hotta, Michio Homma and Akihiko Ishijima, “Torque-speed Relationship of the Na+-driven Flagellar Motor of Vibro alginolyticus” J. Mol. Biol. 327, 1043-1051 (2003)
[14] J. R. Blake, “A note on the image system for a stokeslet in a no-slip boundary” Proc. Camb. Phil. Soc. 70, 303 (1971)
[15] Shay Gueron and Konstantin Levit-Gurevich, “Energetic considerations of ciliary beating and the advantage of metachronal coordination” Proc. Natl. Acad. Sci. USA 96, 12240-12245 (1999)
[16] Yingzi Yang, Jens Elgeti and Gerhard Gompper, “Cooperation of sperm in two dimensions: Synchronization, attraction, and aggregation through hydrohynamic interactions” Phys. Rev. E 78, 061903 (2008)
[17] V. B. Putz and J. M. Yeomans, “Hydrodynamic Synchronization of Model Microswimmers” J. Stat. Phys. 137: 1001-1013 (2009)
[18] Min Jun Kim and Kenneth S. Breuer, “ Use of Bacterial Carpet to Enhance Mixing in Microfluidic Systems” J. Fluids Eng. 129, 319–324 (2007)
[19] Xiao-Lun Wu and Albert Libchaber, “Particle Diffusion in a Quasi-Two-Dimensional Bacterial Bath” Phys. Rev. Lett. 84, 3017 (2000)
[20] Iztok Lebar Bajec and Frank H. Heppner, “Organized flight in birds” Animal Behaviour 78, 777-789 (2009)
[21] John Buck, “Synchronous Rhythmic Flashing of Fireflies II” Q. Rev. Biol, Vol. 63, No.3 (1988)
[22] Mun Ju Kim and Thomas R. Powers, “Hydrodynamic interactions between rotating helices” Phys. Rev. E 69, 061910 (2004)
[23] Yi-Teng Hsiao, Jing-Hui Wang, Yi-Chin Hsu, Chien-Chun Chiu, Chien-Jung Lo, Chia-Wen Tsao and Wei Yen Woon, “Collective sub-diffusive dynamics in bacterial carpet microfluidic channel” Appl. Phys. Lett. 100, 203702 (2012)
[24] Allen T. Chwang and T. Yao-Tsu Wu, “Hydromechanics of low-Reynolds-number flow. Part 2. Singularity method for Stokes flows” J. Fluid Mech. Vol. 67, part 4, pp. 787-815 (1975)
[25] Jeremy S. Hyams and Gary G. Borisy, “Isolated Flagellar Apparatus of Chlamydomonas: Characterization of Forward Swimming and Alteration of Waveform and Reversal of Motion by Calcium Ions in Vitro” J. Cell Sci. 33, 235-253 (1978)
[26] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm and Steven Chu, “Observation of a single-beam gradient force optical trap for dielectric particles” Optics lett. Vol. 11, NO.5 (1986)
[27] Karel Svoboda and Steven M. Block, “Biological Applications of Optical Forces” Annu. Rev. Biophys. Biomol. Struct. 23:247-85 (1994)
[28] Keir C. Neuman and Steven M. Block, “Optical trapping” Rev. Sci. Instrum. 75, 2787 (2004)
[29] Keir C. Neuman, Edmund H. Chadd, Grace F. Liou, Keren Bergman and Steven M. Block, “Characterization of Photodamage to Escherichia coli in optical traps” Biophys. J. vol. 77, 2856-2863 (1999)
[30] N. Koumakis and R. Di Leonardo, “Hydrodynamic Synchronization in Rotating Energy Landscapes” Phys. Rev. Lett. 110, 174103 (2013)
[31] Suddhashil Chattopadhyay, Radu Moldvan, Chuck Yeung and X. L. Wu, “Swimming efficiency of bacterium Escherichia coli” Proc. Natl. Acad. Sci. USA 103, 13712-13717 (2006)
[32] MunJu Kim and Thomas R. Powers, “ Hydrodynamic interactions between rotating helices” Phys. Rev. E 69, 061910 (2004)
[33] M.Reichert and H. Stark, “Synchronization of rotating helices by hydrodynamic interactions” Eur. Phys. J. E 17, 493-500 (2005)
[34] Andrej Vilfan, “Hydrodynamic Flow Patterns and Synchronization of Beating Cilia” Phys. Rev. Lett. 96, 058102 (2006)
指導教授 溫偉源(Wei-Yen Woon) 審核日期 2013-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明