博碩士論文 100222040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:54.92.148.165
姓名 葉韋廷(Wei-Ting Yeh)  查詢紙本館藏   畢業系所 物理學系
論文名稱 組織動力學之建模
(Modeling Tissue Dynamics)
相關論文
★ 鍺銻碲相變化奈米薄膜之奈米尺度光熱性質的研究★ 波在一維系統中的傳播與局域化
★ 生物膜黏著引發的相分離—等效膜勢與數值模擬★ 非平衡生物膜上的區塊形成
★ 液滴上的彈性網絡★ 受體配體叢集在外力下的理論研究
★ 兩板間黏著叢集的強度★ 粒子黏著於生物膜所引發的細胞攝入作用之物理研究
★ 黏著叢集在時變外力下的強度★ 滲透壓對單層巨型微胞的影響
★ 模擬被clathrin蛋白質覆蓋的板塊狀胞吞作用★ T細胞受體活化反應之模型
★ Modeling geometrical trajectories of actin-based motility★ 隨機布耳網路在多連線且臨界情形下的特性
★ 模擬脂質雙層膜上的分子機器★ Seeking bistabilities in toy models of epithelial tissues
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 對於生物組織的調控(regulation)與型態生成(morphogenesis),空間訊息以及細胞系(cell lineage)的考量是不可或缺的。同時,組織回到其恆穩狀態(steady state)的弛豫過程(relaxation process)目前仍然沒有被很好的了解。如果存在著生理上的或者力學上的機制可以驅使組織變得不穩定,那麼這就有可能是組織癌化(carcinogenesis)的一種途徑。為了研究這些問題,我們首先研究細胞系群集動力學(population dynamics)的一般性質。我們發現一般而言,細胞系系統可以容許存在多重的恆穩狀態,而這有或許可以關聯到組織的發育或者癌化。其次,我們針對一個簡化的複層上皮組織(stratified epithelium)模型來研究組織回到其恆穩狀態的弛豫動力學。藉由考量到組織的力學性質-例如黏滯係數(viscosity)-可能與不同細胞間的比例有關係,我們發現當黏滯係數在組織中並非均勻時,一個新的組織不穩定機制有可能會發生。因為過去只有少部分的研究有同時考量空間訊息以及細胞系,我們在此針對連續自我更新(continuous self-renewal)的組織建構了一個空間細胞系模型。我們發現當我們有興趣的時間尺度遠大於細胞週期時間(cell cycle time),則組織的動力學表現得像是低雷諾數(low-Reynolds number)的流體,同時該流體的黏滯係數與不同細胞間的比例有關。在這個一般的空間細胞系模型的框架下,我們亦發現一個複層上皮組織的存在不可或缺的需要型態生成素(morphogen)的參與。這個模型亦允許存在多重複層上皮組織的恆穩狀態,在未來我們可以研究這些可能的恆穩狀態之間的躍遷以及競爭的過程。
摘要(英) It has been known that both spatial information and cell lineage are important in the regulation and morphogenesis of biological tissues. The relaxation dynamics of a tissue toward its steady state is still poorly understood. Furthermore, if there exists physiological or even mechanical mechanism that drives a tissue unstable, it could be a route toward carcinogenesis. To study these problems, we first study the general properties of a cell lineage population dynamics. We find that in general cell lineage systems allow the existence of multiple steady states, and this could be related to tissue development and carcinogenesis. Second, we study the relaxation dynamics of a tissue toward its steady state by a simplified model of stratified epithelium. By taking into account the fact that the mechanical properties of a tissue, for example viscosity, should depend on the local cell composition, we show that a new instability can happen due to the heterogeneous viscosity in the tissue. Since only few of past studies have taken both spatial information and cell lineage into account simultaneously, we construct a spatial cell lineage model for a continuous self-renewal tissue. We show that a tissue behaves as a low Reynolds number fluid on time scales large compare to cell cycle time with a viscosity depending on local cell composition. In the framework of this general spatial cell lineage model, the effect of morphogen is needed for stratified epithelium steady state to exist. Also, this model allows multiple stratified epithelium steady state, so the process of transition and competition between these steady states can be studied in the future.
關鍵字(中) ★ 組織
★ 細胞系
★ 分化
★ 調控
★ 型態生成
★ 癌症
★ 低雷諾數
★ 發育
★ 多重穩定
★ 上皮組織
關鍵字(英) ★ tissue
★ cell lineage
★ differentiation
★ regulation
★ morphogenesis
★ cancer
★ low Reynolds number
★ development
★ multi-stability
★ epithelium
論文目次 1 Introduction 1
1.1 Dynamics of tissue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Cell lineage and regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Model of carcinogenesis - tissue organization field theory . . . . . . . . . . . 7
1.4 Summary of Chapter 1 and motivation . . . . . . . . . . . . . . . . . . . . . 8
2 Mean-Field Formulation 11
2.1 Mean-field equations and stability analysis . . . . . . . . . . . . . . . . . . . 11
2.2 Multi-stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Summary of Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3 Simplified Spatial Model - Stratified Epithelium 21
3.1 Biological tissues as a low-Reynolds number fluid . . . . . . . . . . . . . . . 21
3.1.1 Stratified epitheliumhomeostasis state . . . . . . . . . . . . . . . . . 22
3.1.2 Relaxation towards the stratified homeostasis state . . . . . . . . . . 25
3.2 Viscosity variation due to tissue stratification . . . . . . . . . . . . . . . . . 29
3.3 Including nutrient dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Summary of Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4 The Spatial Cell Lineage Model of a Continuous Self-Renewing Tissue 43
4.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Full model of stratified incompressible epithelium - a first look . . . . . . . . 48
5 Conclusion 53
A Simple Harmonic Osillator Analogy of the Mean-Field Stability Analysis 55
B Boundary Conditions of the Perturbed Equations 57
Bibliography 59
參考文獻 [1] C. W. Wolgemuth. Collective swimming and the dynamics of baterial turbulence. Biophy. J., 95:1564–1574, 2008.
[2] P. Friedl, Y. Hegerfeldt, and M. Tusch. Collective cell migration in morphogenesis and cancer. Int. J. Dev. Biol., 48(5-6):441–449, 2004.
[3] P. Friedl and D. Gilmour. Collective cell migration in morphogenesis, regeneration and cancer. Nat. Rev., 10:445–457, 2009.
[4] M. Perez-Moreno, C. Jamora, and E. Fuchs. Sticky business: Orchestrating cellular signals at adherens junctions. Cell, 4:535–548, 2003.
[5] J. B. Reece, L. A. Urry, M. L. Cain, S. A. Wasserman, P. V. Minorsky, and R. B. Jackson. Campbell Biology (9th Edition). Benjamin Cummings, 2010.
[6] T. Lecuit and P. F. Lenne. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nat. Rev. Mol. Cell Biol., 8:633–644, 2007.
[7] T. Bittig, O. Wartlick, A. Kicheva, M. Gonzalez-Gaitan, and Frank Julicher. Dynamics of anisotropic tissue growth. New J. Phys., 10:063001, 2008.
[8] A. Z. Rizvi and M. H. Wong. Epithelial stem cells and their niche: There is no place like home. Stem Cells, 23:150–165, 2005.
[9] F. M. Watt and B. L. M. Hogan. Out of eden: Stem cells and their niches. Science, 287:1427–1430, 2000.
[10] K. A. Moore and I. R. Lemischka. Stem cell and their niches. Science, 311:1880–1885, 2006.
[11] I. H. Smart. Location and orientation of mitotic figures in the developing mouse olfactory epithelium. J. Anat., 109:243–251, 1971.
[12] A. L. Calof, J. S. Mumm, P. C. Rim, and J. Shou. The neuronal stem cell of the olfactory epithelium. J. Neurobiol., 36(2):190–205, 1998.
[13] I. Bonnet, P. Marcq, F. Bosveld, L. Felter, Y. Bellaiche, and F. Graner. Mechanical state, material properties and continuous description of an epithelial tissue. J. R. Soc. Int., 9:2614–2623, 2012.
[14] R. A. Foty, G. Forgacs, C. Pfleger, and M. S. Steinberg. Liquid properties of embryonic tissues: Measurement of interfacial tensions. Phys. Rev. Lett., 72:2298–2301, 1994.
[15] G. Forgacs, R. A. Foty, Y. Shafrir, and M. S. Steinberg. Viscoelastic prperties of living embryonic tissues: A quantitative study. Biophys. J., 74:2227–2234, 1994.
[16] Richard A. L. Jones. Soft Condensed Matter. Oxford University Press, 2002.
[17] M. Lambert, O. Thoumine, J. Brevier, D. Choquet, D. Riveline, and R.-M. Mege. Mechanical state, material properties and continuous description of an epithelial tissue. Exp. Cell Res., 313:4024–4040, 2007.
[18] J. Ranft, M. Basan, J. Elgeti, J.-F. Joanny, J. Prost, and F. Julicher. Fluidization of tissues by cell division and apoptosis. Proc. Nat. Acad. Sci. USA, 107(49):20863–20868, 2010.
[19] R. A. Weinberg. The Biology of Cancer. Garland Science, 2007.
[20] T. Bittig, O. Wartlick, M. Gonzalez-Gaitan, and F. Julicher. Quantication of growth asymmetries in developing epithelia. Eur. Phys. J. E., 30:93–99, 2009.
[21] H. M. Bryne, J. R. King, D. L. S. McElwain, and L. Preziosi. A two-phase model of solid tumor growth. Appl. Math. Lett., 16:567–573, 2003.
[22] M. Basan, T. Risler, J.-F. Joanny, X. Sastre-Garau, and J. Prost. Homeostatic competition drives tumor growth and metastasis nucleation. HFSP J., 3(4):265–272, 2009.
[23] M. Basan, J.-F. Joanny, J. Prost, and T. Risler. Undulation instability of epithelial tissues. Phys. Rev. Lett., 106:158101, 2011.
[24] T. Risler and M. Basan. Morphological instabilities of stratified epithelia: A mechanical instability in tumor formation. New J. Phys., 15:065011, 2013.
[25] K. Takahashi and S. Yamanaka. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126:663–676, 2006.
[26] K. Takahashi, K. Tanabe, M. Ohnuki, M. Naruta, T. Ichisaka, K. Tomoda, and S. Yamanaka. Induction of pluripotent stem cells from adult human bibroblasts by defined
factors. Cell, 131:861–872, 2007.
[27] T. Enver, M. Pera, C. Peterson, and P. W. Andrews. Stem cell states, fates, and the rules of attraction. Cell Stem Cell, 4:387–397, 2009.
[28] B. Reizes. Classical dentritic cells as a unique immuse cell lineage. J. Exp. Med., 209(6):1053–1056, 2012.
[29] A. D. Lander, K. K. Gokoffski, F. Y.-M. Wan, Q. Nie, and A. L. Calof. Cell lineages and the logic of proliferative control. PLoS Biol., 7:0084–0100, 2009.
[30] M. Loeffler and I. Roeder. Tissue stem cells: Definition, plasticity, heterogenity, selforganization and models - a conceptual approach. Cells Tissue Organs, 171:8–26, 2002.
[31] C. S. Potten. The epidermal proliferative unit: The possible role of the central basal cell. Cell Tissue Kinet, 7:77–88, 1974.
[32] E. Clayton, D. P. Doupe, A. M. Klein, D. J. Winton, and B. D. Simons. A single type of progenitor cell maintains normal epidermis. Nature, 446:185–189, 2007.
[33] H. J. Snippert, L. G. van der Flier, T. Sato, J. H. van Es, M. van der Born, C. Kroon-Veenboer, N. Barker, A. M. Klein, J. van Rheenen, B. D. Simons, and H. Clevers. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing lgr5 stem cells. Cell, 143(1):134–144, 2010.
[34] A. M. Klein, D. P. Doupe, P. H. Jones, and B. D. Simons. Kinetics of cell division in epidermis maintenance. PRE, 76:021910, 2007.
[35] A. M. Klein and B. D. Simons. Universal patterns of stem cell fate in cycling adult tissues. Development, 138:3103–3111, 2011.
[36] C.-S. Chou, W.-C. Lo, K. K. Gokoffski, Y.-T. Zhang, F. Y.-M. Wan, A. D. Lander, A. L. Calof, and Q. Nie. Spatial dynamics of multistage cell lineages in tissue stratification. Biophy. J., 99:3145–3154, 2010.
[37] W.-C. Lo, C.-S. Chou, K. K. Gokoffski, F. Y.-M. Wan, A. D. Lander, A. L. Calof, and Q. Nie. Feedback regulation in multistage cell lineages. Math. Biosci. Eng., 6(1):59–82, 2009.
[38] H. H. Wu, S. Ivkovic, R. C. Murray, S. Jaramillo, K. M. Lyons, J. E. Johnson, and A. L. Calof. Autoregulation of neurogenesis by gdf11. Neuron, 37:197–207, 2003.
[39] C. K. Beites, S. Kawauchi, C. E. Crocker, and A. L. Calof. Identification and molecular regulation of neural stem cells in the olfactory epithelium. Exp. Cell Res., 306:309–316, 2005.
[40] K. K. Gokoffski, H. H. Wu, C. L. Beites, J. Kim, E. J. Kim, M. M. Matzuk, J. E. Johnson, A. D. Lander, and A. L. Calof. Activin and gdf11 collaborate in feedback control of neuroepethelial stem cell porliferation and rate. Developemnt, 138(19):4131–4142, 2011.
[41] D. Hnahan and R. A. Weinberg. The hallmarks of cancer. Cell, 100:57–70, 2000.
[42] H. Hayflict. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res., 37:614–636, 1965.
[43] H. Clevers. The cancer stem cell: Premises, promises and challenges. Nat. Med., 17:313–319, 2011.
[44] T. Boveri. The Origin of Maglignant Tumors. Baltimore, MD Williams & Wikins, 1929.
[45] A. M. Soto and C. Sonnenschein. The tissue organization field theory of cancer: A testable replacement for the somatic mutation theory. Bioessays, 33:332–340, 2011.
[46] L. Chanson, D. Brownfield, J. C. Garbe, I. Kuhn, M. R. Stampfer, M. J. Bissell, and M. A. LaBarge. Self-organization is a dynamics and lineage-intrinsic property of mammary epithelial cells. Proc. Nat. Acad. Sci. USA, 108:3264–3269, 2010.
[47] D. E. Ingber. Cacner as a disease of epithelial-mesenchymal interactions and extracellular matrix regulation. Differentiation, 70:547–560, 2002.
[48] I. P. M. Tomlinson and W. F. Bodmer. Failure of programed cell death and differentiation as cause of tumors: Some simple mathematical models. Proc. Nat. Acad. Sci. USA, 92:11130–11134, 1995.
[49] P. B. Warren. Cells, cancer, and rare events: Homeostatic metastability in stochastic nonlinear dynamical models of skin cell proliferation. Phys. Rev. E, 80:030903, 2009.
[50] I. A. Rodriguez-Brenes, N. L. Komarova, and D. Wodarz. Evolutionary dynamics of feedback escape and the development of stem-cell-driven cancers. Proc. Nat. Acad. Sci. USA, 108(47):18983–18988, 2011.
[51] J.-Y. Chang and P.-Y. Lai. Uncontrolled growth resulting from dedifferentiation in a skin cell proliferation model. Phys. Rev. E, 85:041926, 2012.
[52] A. Vasilyev, Y. Liu, S. Mudumana, and S. Mangos. Collective cell migration drives morphogenesis of the kidney nephron. Development, 137:1407–1420, 2009.
[53] R. M. H. Merks and J. M. Glazier. A cell-centered approach to development biology. Phys. A, 352:113–130, 2005.
[54] M. Kuchen and A. C. Newell. Fringerprint formation. J. Ther. Biol., 235:71–83, 2005.
[55] B. I. Shraiman. Mechanical feedback as a possible regulator of tissue growth. Proc. Nat. Acad. Sci. USA, 102(9):3318–3323, 2005.
[56] L. Hufnagel, A. A. Teleman, H. Rouault, S. M. Cohen, and B. I. Shraiman. On the mechanism of wing size determination in fly developemnt. Proc. Nat. Acad. Sci. USA, 104(10):3835–3840, 2006.
[57] E. Hannezo, J. Prost, and J.-F. Joanny. Instabilities of monolayered epithelia: Shape and structure of villi and crypts. Phys. Rev. Lett., 107:078104, 2011.
[58] E. Hannezo, J. Prost, and J.-F. Joanny. Mechanical instabilities of biological tubes. Phys. Rev. Lett., 109:018101, 2012.
[59] E. Sahai. Illustrating the metastatic process. Nat. Rev. Cacner, 1910:737–749, 2007.
[60] T. Reya, S. J. Morisson, M. E. Clarke, and I. L. Weissman. Stem cells, cancer, and cancr stem cells. Nature, 414:105–111, 2001.
[61] A. D. Lander. The ’stem cell’ concept: Is it holding us back? J. Biol., 8:70, 2009.
[62] D. Zipori. The nature of stem cells: State rather than entity. Nat. Rev. Genet., 5:873–878, 2004.
[63] M. W. Maffini, A. M. Soto, J. M. Calabro, and A. A. Ucci. The stroma as a crucial target in rat mammary gland carcinogenesis. J. Cell Sci., 117:1495–1502, 2004.
[64] J. Ovadia and Q. Nie. Stem cell niche structure as an inherent cause of undulating epithelial morphogenesis. Biophy. J., 104:237–246, 2013.
[65] D. E. Ingber. Mechanical control of tissue growth: Function follows form. Proc. Nat. Acad. Sci. USA, 102(33):11571–11572, 2005.
[66] C. M. Nelson, R. P. Jean, J. L. Tan, W. F. Liu, N. J. Sniadecki, A. A. Spector, and C. S. Chen. Emergent patterns of growth controlled by multicellular form and mechanics. Proc. Nat. Acad. Sci. USA, 102(33):11594–11599, 2005.
[67] G. Cheng, J. Tse, R. K. Jain, and L. L. Munn. Micro-enviromental mechanical stress controls tumor sphroid size and morphogenesis by supressing proliferation and inducing apoptosis in cancer cells. PLoS one, 4(2):e4632, 2009.
[68] F. Montel, M. Delarue, J. Elgeti, L. Malaguin, M. Basan, T. Risler, B. Cabane, D. Vignjevic, J. Prost, G. Cappello, and J.-F. Joanny. Stress clamp experiments on multicellular tumor spheroids. Phys. Rev. Lett., 107(18):188102, 2011.
[69] A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell, 126(4):677–689, 2006.
[70] B. Li, F. Li, K. M. Puskar, and J. H.-C. Wang. Spatial patterning of cell proliferation and differentiation depends on mechanical stress magnitude. J. Biomechanics, 42:1622–1627, 2009.
[71] Steven H. Strogatz. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Westview Press, 2001.
[72] Uri Alon. An Introduction to System Biology: Design Principles of Biological Circuits. Chapman and Hall/CRC, 2006.
[73] Sze-Bi Hsu. Ordinary Differential Equations with Applications. World Scientific Pub Co Inc, 2006.
[74] G. T. Mase, R. E. Smelser, and G. E. Mase. Continuum Mechanics for Engineers (3rd edition). CRC Press, 2009.
[75] O. Gonzalez and A. M. Stuart. A First Course in Continuum Mechanics. Cambridge University Press, 2008.
[76] Lee Segel and G. H. Handelman. Mathematics Applied to Continuum Mechanics. Society for Industrial and Applied Mathematics, 2007.
[77] Willians E. Boyce and Richard C. Diprima. Elementary Differential Equations and Boundary Conditions (9th Edition). Wiley, 2008.
[78] A. D. Lander, Q. Nie, and F.-Y. Wan. Do morphogen gradients arise by diffusion? Dev. Cell, 2(6):785–796, 2002.
[79] F. Crick. Diffusion in embryogenesis. Nature, 225:420–422, 1970.
[80] M. K. DeHamer, J. L. Guevara, K. Hannon, and A. L. Calof B. B. Olwin. Genesis of olfactory receptor neurons in vitro: Regulation of porgenitor cell divisions by fibroblast growth factors. Neurons, 13:1083–1097, 1994.
[81] J. Ranft, J. Prost, F. Julicher, and J.-F. Joanny. Tissue dynamics with permeation. Eur. Phys. J. E. Soft Matter, 35(6):46, 2012.
[82] L. D. Landau, L. P. Pitaevskii, and E. M. Lifschitz. Theory of Elasticity (3rd edition). Elservier Butterworth-Heinemann, 1986.
[83] U. S. Schwarz and S. A. Safran. Elastic interactions of cells. Phys. Rev. Lett., 88:048102, 2002.
[84] I. B. Bischofs, S. A. Safran, and U. S. Schwarz. Elastic interactions of active cells with soft materials. Phys. Rev. E, 69:021911, 2004.
[85] U. S. Schwarz, N. Q. Balaban amd D. Riveline, A. Bershadsky, B. Geiger, and S. A. Safran. Calculation of forces at focal adhesions from elastic substrate data: the effect of localized force and the need for regularization. Biophys. J., 83(3):1380–1394, 2002.
[86] D. M. Bryant and K. E. Mostov. From cells to organs: Building polarizied tissue. Nat. Rev. Mol. Biol., 9(11):887–901, 2008.
[87] M. Thery, A. Jimenez-Dalmaroni, V. Racine, M. Bornens, and F. Julicher. Experimental and theoretical study of mitotic spindle orientation. Nature, 447:493–497, 2007.
[88] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walters. Molecular Biology of Cell (5th Edition). Garland Science, 2007.
[89] F. H. Harlow and J. E. Welch. Numerical calculation of time dependent viscous incompressible flow of fluid with free surface. Phys. Fluids, 8:2182–2189, 1965.
[90] D. D. Joseph. Domain perturbations: The higher order theory of infinitesmal water waves. Arch. Rational Mech. Anal., 51:295–303, 1973.
指導教授 陳宣毅(Hsuan-Yi Chen) 審核日期 2013-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明