博碩士論文 100223014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:94 、訪客IP:18.117.230.50
姓名 王姵絜(Pei-chieh Wang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 多孔材料用於揮發性有機物質的吸脫付特性研究
相關論文
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 以逆吹式氣相層析法分析氣體成份
★ 氣相層析法應用於工業排放連續監測★ 煙道氣揮發性有機化合物連續監測方法開發
★ 自製新型除水及熱脫附濃縮裝置用於GC/MS線上分析揮發性有機汙染物★ 觸媒式非甲烷總碳氫分析儀開發與驗證
★ 自製除水器及熱脫附儀用於線上GC/MS/FID揮發性有機污染物之分析★ 大氣及水樣中揮發性有機氣體自動化分析技術之建立及應用
★ VOC前濃縮與預警系統之建構★ 建立自動化甲烷連續量測系統與其在指示大氣輻射冷卻之應用
★ 臭氧前趨物連續監測與臭氧生成之光化學探討★ 以近連續方式量測空氣中甲烷與異戊二烯及其生成之季節性探討
★ 自行架設光化學測站與商業化儀器平行比對及所得資料初步分析★ 近地表臭氧前驅物分析之前濃縮技術改良
★ 自動化噴霧捕捉分析系統之建立與研究★ 大體積固相微萃取水中揮發性有機污染物
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 存在於大氣中的揮發性有機化合物(Volatile Organic Compounds, VOCs)本身是空氣汙染物,也是形成臭氧及二次有機氣溶膠的前驅物。VOCs在一般大氣環境下的濃度很低(~ppb或~ppt等級),如何線上濃縮VOCs是氣相層析(GC)進樣的關鍵步驟。
本研究以自製不須冷劑降溫之熱脫附(Thermal Desorption, TD)前濃縮方法,嘗試在活性碳、矽及鋅等多孔洞材料中,利用其比表面積、孔徑體積及孔徑大小等不同特性,找到一個良好的前濃縮介質取代參考之3 in 1配方,並藉由前濃縮介質本身之吸脫附特性差異,尋找可獲得最佳熱脫附峰形之材料,以提升VOCs之定性及定量工作。
由於乙烷、乙烯、丙烷、丙烯等具高揮發性的物質,容易在濃縮時貫流(breakthrough),欲捕捉這類小分子物質,除了降溫之外,濃縮介質本身的孔徑特性也很重要。在吸脫附測試過程中,發現矽及鋅材料對這類物種的捕捉效率差,而活性碳材料對VOCs則有較佳的捕捉能力,推測是因為活性碳材料具微孔特性(平均孔徑大約2 nm)以及高比表面積(~3000 m2g-1),然而即使捕捉溫度已降到-40℃,乙烷、乙烯仍有貫流現象,因此在前端加入一個對輕碳物種具有良好捕捉能力的Carbosieve SШ,形成雙重床之捕捉管,當TD降溫至-20℃,即可完全捕捉C3-C12之VOCs物種,當其降溫至-40℃便能有效捕捉C2物種,解決C2物種貫流的問題,且具有良好的再現性(RSD < 4%)以及線性關係(R2> 0.99)。
由於層析峰形好壞會影響定性及定量之工作,而峰形又與濃縮介質對VOCs物種之熱脫附特性有關,在熱脫附峰形之測試結果中,以活性碳材料之熱脫附峰形表現最好,因其峰形較窄高且對稱性較佳,但仍有拖尾現象,因此利用中心切割(heart-cut)技術將熱脫附峰進行切片分析,診斷出造成拖尾之物種為重碳物種,雖然藉由分流可改善拖尾現象,並提高熱脫附峰之對稱性,但仍進一步調整系統參數加以改良熱脫附峰形,這些參數包括GC端之載流氣體流速、烘箱升溫程序,以及TD端之線圈加熱最大輸出功率、改變加熱方式,最終得以藉由增快升溫速度,改善並獲得較對稱之熱脫附峰形。
摘要(英) Ambient volatile organic compounds (VOCs) are not only toxic at high concentration, but also act as precursors of ozone and secondary organic aerosols (SOA). Monitoring ambient VOCs often requires the step of pre-concentration prior to gas chromatographic (GC) analysis. Sorbent adsorption and thermal desorption (TD) in the process of pre-concentration inevitably result in a certain degree of peak tailing and asymmetry affecting qualitative and quantitative results.
In this study, we used a self-built cryogen-free TD device to test for a series of sorption materials including activated carbons, mesoporous silicates, and Zn porous materials. Special attention was paid to ethane, ethylene, propane, and propylene because of their extremely low boiling points, which easily results in pronounced breakthrough problem and hence low recovery. Of all the tested porous materials, the activated carbon materials were found to exhibit better performance than Si and Zn materials. Although they can trap the widest range of VOCs, but still showed insufficient efficiency on C2 compounds, even trapping at low temperature (-40℃) and high inlet pressure (40 psi). As a result, the commercial Carbosieve SШ, which is a microporous sorbent, was added in the sorbet bed to improve the C2 recovery.This dual sorbent formulation of activated carbon materials plus Carbosieve SШ was able to effectively trap the full range of C2-C12 compounds with desired linearity (R2> 0.99) and reproducibility (RSD < 4%).
The use of activated carbon materials as sorbents also produced much narrower and more symmetric peaks than the the use of other materials. Even so, slight peak tailing still existed. To diagnose the cause of tailing, the Deans swtich method was adopted to slice the desorption peak for the difference in composition. Compound discrimination were found between different slices and higher boiling VOCs tended to reside more in the later slices than earlier ones.
In addition to the aforementioned efforts of sorbent selection and TD peak diagnosis, other TD variables, such as the TD heating rate and flow splitting, were also tuned to optimize peak shape and symmetry.
關鍵字(中) ★ 多孔材料
★ 揮發性有機化合物
★ 氣相層析儀
關鍵字(英) ★ Porous mateirals
★ Volatile organic compounds
★ Gas chromatography
論文目次 中文摘要 i
Abstract iii
謝誌 v
目錄 vii
圖目錄 x
表目錄 xiv
第一章、前言 1
1-1 VOCs之來源 2
1-2 VOCs之危害 3
1-3 光化學反應 4
1-4 光化評估測站(PAMS) 7
1-5 實驗動機 8
第二章、文獻回顧 10
2-1 VOCs之分析方法 10
2-2 化學吸附劑材料 12
2-2-1 碳分子篩(Carbon molecular sieves) 14
2-2-2 石墨碳黑(Graphitized carbon black) 15
2-2-3 活性碳(Activated carbon) 16
2-2-4 沸石(Zeolites) 20
2-2-5 多重床(Multi-bed)材料組合 25
2-3 峰形變異因子 26
2-3-1 額外管柱效應(Extra-column effects) 27
2-3-2 熱脫附行為 29
第三章、實驗原理及分析方法 32
3-1 前濃縮儀(TD)裝置 33
3-1-1 閥件與管路配置 34
3-1-2 捕捉管製備 35
3-1-3 致冷裝置及熱脫附裝置 39
3-1-4 自動化控制程序 41
3-2 前濃縮儀(TD)運作機制與流程 42
3-3 層析系統架構 45
3-3-1 層析管柱原理 45
3-3-2 中心切割(Heart-cut)技術原理 48
3-3-3 偵測器 52
3-3-4 層析條件及參數設定 53
3-4 標準氣體 54
第四章、結果與討論 56
4-1 矽及鋅材料之捕捉效能 57
4-2 活性碳材料之捕捉效能 59
4-2-1 C3-C12物種 61
4-2-2 C2物種 66
4-2-3 全範圍VOCs物種 69
4-2-4 改變進樣壓力 76
4-2-5 添加輔助材料Carbosieve SШ 78
4-3 濃縮介質之熱脫附峰形 83
4-3-1 熱脫附特性 84
4-3-2 熱脫附峰切片 93
4-3-3 氣相層析儀(GC)參數調整 108
4-3-4 前濃縮儀(TD)參數調整 111
第五章、結論與未來展望 116
5-1 結論 116
5-2 未來展望 117
第六章、參考文獻 118
參考文獻 [1]揮發性有機物空氣污染管制及排放標準.中華民國行政院環境保護署2013年1月.
[2]C.P.Gregory, Y.W.Chun, B.Don, L.A.John, R. Gurumurthy, H.S.Thomas,M.Maria, S.Ken(2004)Comparing air dispersion model predictions with measured concentrations of VOCs in urban community.Environ. Sci. Technel. 38, 1949-1959.
[3]H.Wohrnschimmel, M.Magana, W.A.Stahel, S.Blanco, S.Acuna, J.M.Perez, S.Gonzallez, V.Gutierrez, S.Wakamatsu, B.Cardenas(2010)Measurements and receptor modeling of volatile organic compounds in Southeastern Mexico City, 2000-2007.Atmos. Chem. Phys. 10, 9027-9037.
[4]M.Placet, C.O.Mann, R.O.Gilbert, M.J.Niefer(2000) Emissions ofozone precursors from stationary sources: a critical review.Atmos.Environ. 34, 2183-2204.
[5]N.Yassaa, E.Brancaleoni, M.Frattoni, P.Ciccioli(2006) Isomericanalysis of BTEXs in the atmosphere using beta-cyclodextrincapillary chromatography coupled with thermal desorption and massspectrometry.Chemosphere 63, 502-508.
[6]F.Tassi, G.Montegrossi, O.Vaselli, A.Morandi, F.Capecchiacci, B.Nisi (2011) Flux measurements of benzene and toluene form landfill cover soils.Waste Management & Research 29, 50-58.
[7]J.G.Paul, O.A.Meinrat (1990) Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles.Science 250,1669-1678.
[8]P.Middleton(1995) Van Nostrand Reinhold: New York.Source of air pollutants, in Composition, Chemistry,and Climate of the Atmosphere88-119.
[9]A.Guenther,C.N. Hewitt, D.Erickson, R.Fall, C.Geron, T.Graedel, P.Harley, L.Klinger, M.Lerdau, W.A.Mckay, T.Pierce, B.Scholes, R.Steinbrecher, R.Tallamraju, J.Taylor, P.Zimmerman (1995) A global model of natural volatile organic compound emissions.J. Geophys. Res. 100, 8873-8892.
[10]M.Hakim, Y.Y.Broza, O.Barash, N.Peled, M.Phillips, A.Amann, H.Haick(2012) Volatile organic compounds of lung cancer and possiblebiochemical pathways.Chem Rev. 112, 5949-5966.
[11]R.Atkinson(2000)Atmospheric chemistry of VOCs and NOx.Atmos.Environ. 34, 2063-2101.
[12]http://www.texaninspection.com/home-inspection-air-quality.php
[13]D.B.David(1991) Air toxics: the problem.EPA Journal 172-30.
[14]T.B.Ryerson, M.Trainer, J.S.Holloway, D.D.Parrish, L.G.Huey, D.T.Sueper, G.J.Frost, S.G.Donnelly, S.Schauffler, E.L.Atlas, W.C.Kuster, P.D.Goldan, G.Hubler, J.F.Meagher,F.C.Fehsenfeld(2001) Observations of ozone formation in power plantplumes and implications for ozone control strategies.Science292, 719-723.
[15]空氣品質監測網-光化測站之背景說明. 中華民國行政院環境保護署
http://taqm.epa.gov.tw/taqm/zh-tw/b0104.aspx
[16]http://www.epa.gov/ttn/amtic/pamsmain.html
[17]空氣品質監測網-光化測站之測站介紹. 中華民國行政院環境保護署
http://taqm.epa.gov.tw/taqm/zh-tw/b0104-2.aspx
[18]空氣品質監測網-光化測站之監測儀器. 中華民國行政院環境保護署
http://taqm.epa.gov.tw/taqm/zh-tw/b0104-4.aspx
[19]S.P.Chen, T.H.Liu, T.F.Chen, C.F.Ou Yang, J.L.Wang, J.S.Chang (2010) Diagnostic modeling of PAMS VOC observation.Environ. Sci. Technol. 44, 4635-4644.
[20]空氣品質監測網-普通測站之測站資訊.中華民國行政院環境保護署
http://taqm.epa.gov.tw/taqm/zh-tw/SiteListInMap.aspx
[21]C.H.Wang, C.C.Chang, J.L.Wang (2007) Devising an adjustable splitter for duel-column gas chromatography. J. Chromatogr. A. 1163, 298-303.
[22]空氣中揮發性化合物篩檢方法-開徑式傅立葉轉換紅外光光譜分析法NIEA A002.10C.中華民國行政院環境保護署2005年11月.
[23]W.Lindinger, A.Hansel, A.Jordan(1998) On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research.International Journal of mass spectrometry and ion processes 173, 191-241.
[24]J.M.Scotter,V.S.Langford,P.F.Wilson, M.J.Mcewan, S.T.Chambers(2005) Real-time detection of common microbial volatile organic compounds from medically important fungi by selected ion flow tube-mass spectrometry (SIFT-MS).Journal of Microbiological Methods 63, 127-134.
[25]T.Wanke, J.Vehlow(1997) IMR-MS on-line measurements in the exhaust gas of a municipal solid waste incineration pilot plant (Tamara).Chemosphere 34, 345-355.
[26]Compendium Method TO-17: The determinationof volatile organic compounds(VOCs) in ambient air using active sampling onto sorbent tubes. USEPA(1999).
[27]排放管道中揮發性有機化合物檢測方法-揮發性有機化合物採樣組裝/氣相層析質譜儀法NIEA A721.70B.中華民國行政院環境保護署1997年9月.
[28]P.B.Shepson, T.E.Kleindienst, H.B.McElhoe(1987) A cryogenictrap/porous polymer sampling technique for the quantitative determination ofambient volatile organic compound concentrations.Atmos.Environ. (1967) 21, 579-587.
[29]D.Helmig(1999) Air analysis by gas chromatography.J. Chromatogr.A 843, 129-146.
[30]Compendium Method TO-3: Thedeterminationofvolatile organic compounds inambientairusing cryogenic preconcentrationtechniques and gas chromatography with flame ionization and electron capture detection.USEPA (1984).
[31]Compendium Method TO-12: Thedeterminationof non-methaneorganiccompounds (NMOC) inambientairusing cryogenic preconcentrationand directflame ionizationdetection (PDFID).USEPA
[32]Compendium Method TO-15: The determination of volatileorganic compounds(VOCs) in air collected in specially preparedcanisters and analyzed by gas chromatography/massspectrometry.USEPA (1999).
[33]空氣中揮發性有機化合物檢測方法-不鏽鋼採樣筒/氣相層析質譜儀法NIEA A715.14B.中華民國行政院環境保護署2013年1月.
[34]C.J.Lu, E.T.Zellers(2001) A dual-adsorbent preconcentrator for a portableindoor-VOC microsensor system.Analytical Chemistry 73,3449-3457.
[35]J.M.Sanchez, R.D.Sacks(2003) On-line multibed sorption trap andinjector for the GC analysis of organic vapors in large-volume airsamples.Analytical Chemistry 75, 978-985.
[36]Compendium Method TO-1:The determination of volatileorganic compounds inambientairusingTenax®adsorptionandgaschromatography/massspectrometry (GC/MS).USEPA (1984).
[37]Compendium Method TO-2:TThe determination of volatileorganic compounds inambientairbycarbonmolecularsieveadsorptionand gas chromatography/massspectrometry (GC/MS).USEPA (1984).
[38]R.Simo, J.O.Grimalt, J.Albaiges(1993) Field sampling and analysis ofvolatile reduced sulphur compounds in air, water and wet sedimentsbycryogenic trapping and gas chromatography.J. Chromatogr. A 655, 301-307.
[39]空氣中有機光化前驅物自動連續監測方法-氣相層析法NIEA A505.11B.中華民國行政院環境保護署2006年2月.
[40]http://sushrutchemicals.com/activatedCarbon.html
[41]H. Jin, Y.S. Lee, I. Hong (2007) Hydrogen adsorption characteristics of activated carbon.Catalysis Today120, 399-406.
[42]陳彥呈, 以NCL-A9K4活性碳作為VOC濃縮介質與熱脫附方法之改良.國立中央大學化學研究所碩士論文 (2011).
[43]Y. Li,R.T.Yang (2007)Hydrogen storage on platinum nanoparticles doped on superactivated carbon.J. Phys. Chem. C 111, 11086-11094.
[44]H. Chen,R.T.Yang (2010)Catalytic effects of TiF3 on hydrogen spillover on Pt/carbon forhydrogen storage.Langmuir 26, 15394-15398.
[45]許嘉鴻, 水熱碳化之蔗糖以氫氧化鉀活化製備活性碳及其性質.國立中央大學化學工程與材料工程學系碩士論文 (2009).
[46]陳柏同,高比表面積活性炭之合成及儲氫的應用. 國立中央大學化學工程與材料工程學系碩士論文 (2010).
[47]J.S.Beck, J.C.Vartuli, W.J.Roth, M.E.Leonowicz,C.T.Kresge, K.D.Schmitt, C.T-W.Chu, D.H.Olson,E.W.Sheppard, S.B.McCullen,J.B.Higgins,J.L.Schlenker(1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates.J. Am. Chem. Soc. 114, 10834-10843.
[48]http://www.chem.ncu.edu.tw/KaoHM/%E7%B6%B2%E9%A0%81/SBA.htm
[49]吳東明,中孔徑矽分子篩與微孔徑碳分子篩使用於VOC線上濃縮之吸附性比較.國立中央大學化學研究所碩士論文 (2005).
[50]李育誠,矽與碳結構多孔物質作為VOC線上濃縮之吸脫附特性比較. 國立中央大學化學研究所碩士論文 (2007).
[51]劉謹瑜,以中孔徑矽分子篩作為氣相PAHs吸附劑之探討.國立中央大學化學研究所碩士論文 (2008).
[52]廖千宜,多孔材料吸附特性研究與氣體線上校正方法探討.國立中央大學化學研究所碩士論文 (2009).
[53]陳海茵,一氧化碳與二氧化碳分析系統的建立與驗證.國立中央大學化學研究所碩士論文 (2006).
[54]黃新維,利用中孔徑矽分子篩MCM-41分離、量測大氣二氧化碳.國立中央大學化學研究所碩士論文 (2010).
[55]蘇源昌,自動氣相層析質譜儀於揮發性有機化合物之分析技術與應用. 國立中央大學化學研究所博士論文 (2011).
[56]J.S.Lettow, Y.J. Han, P. Schmidt-Winkel,P. Yang,D. Zhao,G.D.Stucky,J.Y.Ying (2000) Hexagonal to mesocellular foam phase transition inpolymer-templated mesoporous silicas.Langmuir16, 8291-8295.
[57]A. Phan,C.J. Doonan, F.J.Uribe-Romo, C.B.Knober, M. O’keeffe, O.M.Yaghi(2010) Synthesis, structure, and carbon dioxidecapture properties of zeoliticimidazolateframeworks.Accountsof Chemical Research 43, 58-67.
[58]K.S. Park,Z. Ni,A.P.Cote,J.Y. Choi,R. Huang,F.J.Uribe-Romo,H.K.Chae,M. O’Keeffe,O.M.Yaghi (2006) Exceptional chemical and thermal stability of zeoliticimidazolateframeworks.PNAS103, 10186-10191.
[59]H.L. Huang,W.J. Zhang,D.H. Liu,B. Liu,G.J. Chen,C.L. Zhong (2011) Effect oftemperatureongasadsorptionandseparationinZIF-8:Acombinedexperimentalandmolecularsimulationstudy.Chemical EngineeringScience66, 6297-6305.
[60]Q. Song,S.K.Nataraj, M.V.Roussenova, J.C. Tan, D.J.Hughes, W. Li,P. Bourgoin,M.A. Alam, A.K.Cheetham, S.A.Al-Muhtasebd,E. Sivaniah (2012)Zeolitic imidazolate framework (ZIF-8) based polymer nanocompositemembranes for gas separation.Energy Environ. Sci.5, 8359-8369.
[61]http://large.stanford.edu/courses/2012/ph240/to1/
[62]Y. Pan, Y. Liu, G. Zeng, L. Zhao,Z. Lai (2011) Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystalsin an aqueous system.Chem. Commun.47, 2071-2073.
[63]A.Bhushan (2006)Systemoptimizationforrealizingaminiaturizedgaschromatographsensorforrapid chemicalanalysis.
[64]M.M.Ryan,W.D.John(2003) Extracolumn effects.LCGC7, 1050-1052.
[65]T.Y.Chen, M.J.Li, J.L. Wang(2002) Sub-second thermal desorptionof a micro-sorbent trap for the analysis of ambient volatile organiccompounds.J. Chromatogr. A 976, 39-45.
[66]M.Dunn, R.Shellie,P.Morrison,P. Marriott(2004) Rapid sequentialheart-cut multidimensional gas chromatographic analysis.J.Chromatogr. A 1056, 163-169.
[67]M.Bertsch(1999) Concepts,instrumentation, and applications - Part 1: fundamentals,conventional two-dimensional gas chromatography, selectedapplications.J. High. Resolut.Chromatogr.22, 647-665.
[68]J.T.Scanlon, D.E.Willis(1985) Calculation of flame ionization detector relative response factors using the effective carbon number concept. Journal of Chromatographic Science 23, 333-340.
[69]J.Pollmann, D.Helmig, J.Hueber, D.Tanner, P.P.Tans (2006) Evaluationof solid adsorbent materials for cryogen-free trapping-gas chromatographicanalysis of atmospheric C2-C6 non-methane hydrocarbons.J.Chromatogr. A1134, 1-15.
指導教授 王家麟(Jia-lin Wang) 審核日期 2013-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明