博碩士論文 100223041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.145.93.68
姓名 羅世偉(Shih-Wei Lo)  查詢紙本館藏   畢業系所 化學學系
論文名稱 合成具有抗腸病毒活性「二苯」及 「亞甲基二苯」與「阿昔洛韋」之共軛化合物
(Synthesis of Benzhydryl– and Benzhydrylidene–Acyclovir Conjugates with Anti-enterovirus Activity)
相關論文
★ 合成醯胺鍵及胺鍵連結之鳥苷與香豆素共軛化合物並探討其構形★ 合成含腺嘌呤核苷之新型奈米碳管
★ 合成具有抗病毒潛力的香豆素與腺嘌呤、腺苷、 肌苷之胺鍵標靶共軛化合物★ 合成腺苷與含氮雜環之硫烷鍵共軛化合物作為抗病毒試劑
★ 腺苷與香豆素共軛連結化合物之合成與其構形之探討★ 探討電子效應和立體障礙對於「胺基醇」轉換成烯類化合物之影響
★ 探討β胺醇之α碳上立體障礙與電子效應對苯炔誘導形成碳與碳雙鍵反應之影響★ 研究「二苯並環庚烯」及「脂芳烴」之「阿昔洛韋」共軛化合物 的結構與抗病毒活性的關係
★ 合成脲鍵連結之「去甲替林」與「核苷」 共軛化合物用作抗腸病毒藥劑★ 合成「核苷」與「金剛胺」連結之脲鍵化合物作為抗病毒藥劑
★ 合成含胺基酸酯之「無環鳥苷」與「去甲替林」共軛化合物作為抗腸病毒藥劑★ 探討合成含四級胺鹽之金奈米粒子之條件
★ 苯并咪唑與香豆素共軛連結化合物之合成與其構型之探討★ 合成醯胺鍵結苯并咪唑與香豆素之化合物並探討其構形
★ 設計及合成含藥物之新穎鉑錯合物
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 病毒造成的疾病與死亡是人類必須面對的問題,其中以高變異性RNA病毒所造成的傷害最為嚴重,至今仍缺乏合適抗該等病毒藥物與疫苗。因此「歐盟第七架構計畫」中將「黃病毒科」、「微小核醣核酸」病毒科等RNA病毒列為優先研究目標,欲開發抑制此類RNA病毒的化合物。本實驗室參與「歐盟第七架構計畫」中名為SILVER之計畫,致力於先導藥物開發。
胡紀如教授實驗室過去將有抗病毒活性之藥物以連接鍵在一起,發現藥物「去甲替林」與「阿昔洛韋」鍵結之化合物對腸病毒具有良好的抑制活性,因此本人採用類似的架構設計分子,使用結構類似於「去甲替林」的「二苯胺類」或「亞甲基二苯胺類」化合物與「阿昔洛韋」鍵結。合成的方法為將「二苯胺類」或「亞甲基二苯胺類」藉由「三光氣」從胺基反應成「異氰酸酯」,再與「阿昔洛韋」衍生物進行加成反應。
本人利用「核磁共振光譜儀」、「高解析質譜儀」和「紅外線光譜儀」鑑定合成之共軛化合物結構,最後將保護基去除得到目標分子。其中共軛化合物21具有抑制「腸病毒71型」之活性,其EC50 = 23.7 μM。
摘要(英) Virus-related diseases pose a serious global treat to human health. In particular, RNA viruses lack effective drugs and vaccines, largely owing to the rapid mutation rate of such viruses. Therefore, the Seventh Framework Programme in the European Union has approved a project that focuses on drugs discovery towards Flaviviridae and Picornaviridae. Our laboratory participating in this program, referred to as SILVER, Our laboratory is devoting its efforts developing lead candidate.
The laboratory of Professor Jih Ru Hwu has combined two antiviral activity-related drugs together. Based on those results, nortriptyline–acyclovir conjugates to inhibit of enterovirus replication activity, Correspondingly, this study use a similar architecture design to molecular structure. Our indicate that benzhydryl or benzhydrylidene is similar to nortriptyline, so we replaces "nortriptyline" with benzhydryl or benzhydrylidene. This study focuses on benzhydryl–acyclovir and benzhydrylidene–acyclovir conjugates as the target product, The synthetic method uses triphosgene react with amines, allowing for functional group from amine to isocyanate, and then reacting with acyclovir derivatives.
The target structures are confirmed by nuclear magnetic resonance, high resolution mass spectrometers, and infrared spectroscopy. Finally, a protecting group is removed to achieve the final target. For the conjugated compound 21 which inhibits "EV71" activity, its EC50 = 23.7 μM.
關鍵字(中) ★ 阿昔洛韋
★ 腸病毒
關鍵字(英) ★ Acyclovir
★ enterovirus
論文目次 中文摘要 ............................................................................................................. i
英文摘要 ............................................................................................................ ii
謝誌 ................................................................................................................... iii
目錄 ................................................................................................................... iv
圖目錄 ............................................................................................................... xi
表目錄 ............................................................................................................... xii縮寫對照表........................................................................................................ xiii
一、 緒 論(Introduction).............................................................................. 1
二、 結 果(Results)....................................................................................... 7
2-1 合成含矽保護基的benzhydryl–acyclovir新化合物 (21–23)..….. 7
2-2 合成benzhydryl–acyclovir新化合物 (12–14)..………….…….. 12
2-3 合成含矽保護基的benzhydrylidene–acyclovir新化合物
(31及32)…………………………………………………….…... 13
2-4 合成Benzhydrylidene–Acyclovir新化合物 (15及16)..………... 15
三、 討 論 (Discussion) ................................................................................. 16
3-1 探討不同「異氰酸酯」與「阿昔洛韋」衍生物反應
的最佳化反應條件 …..………………………………………….. 16
3-2 探討Benzhydryl––Acyclovir Conjugate的反應位置
與結構確定 …………………………...…...……........................ 18
3-3 探討目標產物抑制「腸病毒71型」的活性表現…..………..…... 21
3-4 利用UV-VIS測定新穎化合物之水溶性 ….....................…….... 24
3-5 利用UV-VIS光譜法測定具有抗「腸病毒71型」
之化合物 21的脂溶性 .…..……...……….…..…….….………. 26
四、 結 論(Conclusion)…............................................................................. 28
五、 實 驗 部 分(Experimental Section)…................................................. 29
N2-Benzhydrylcarbamoyl-9-[(2’-hydroxyethoxy)methyl]guanine (12) .. 30
N2-2’’,2’’-Diphenylethylcarbamoyl-9-[(2’-hydroxyethoxy)methyl]
guanine (13) ...................................................................................... 31
N2-3’’,3’’-Diphenylpropylcarbamoyl-9-[(2’-hydroxyethoxy)methyl]
guanine (14) .……………..……………………………..…………. 32
N2-3’’,3’’-Diphenylallylcarbamoyl-9-[(2’-hydroxyethoxy)methyl]
guanine (15) .…………..………………………...………………… 33
N2-4’’,4’’-Diphenylbut-3-en-carbamoyl-9-[(2’-hydroxyethoxy)methyl]
guanine (16) .……………..………………………………………... 34
N2-Benzhydrylcarbamoyl-9-[2’-O-(tert-butyldimethylsilyl)methyl]
guanine (21) …….……………………………………………....…. 35
N2-(2’’,2’’-Diphenylethylcarbamoyl)-9-[2’-O-(tert-butyldimethylsilyl)
methyl]guanine (22) ……………………………………………….. 36
N2-(3’’,3’’-Diphenylpropylcarbamoyl)-9-[2’-O-(tert-butyldimethylsilyl)
methyl]guanine (23) ……………...………………..………………. 37
N2-(3’’,3’’-Diphenylallylcarbamoyl)-9-[(2’-O-tert-butyldimethylsilyl)
methyl]guanine (31) ………..……………………………………… 38
N2-(4’’,4’’-Diphenylbut-3-en-carbamoyl)-9-[(2’-O-(tert-butyldimethyl
silyl)methyl]guanine (32)….....…….……………………………… 39
六、 參 考 文 獻(References)……............................................................ 41
七、 光 譜 ...................................................................................................... 47
N2-Benzhydrylcarbamoyl-9-[(2’-hydroxyethoxy)methyl]guanine (12)
之1H NMR spectrum ………….………………………………… 48
N2-Benzhydrylcarbamoyl-9-[(2’-hydroxyethoxy)methyl]guanine (12)
之13C NMR spectrum …..……………………….………….…….. 48
N2-Benzhydrylcarbamoyl-9-[(2’-hydroxyethoxy)methyl]guanine (12)
之IR spectrum …………..………….…………………………….. 49
N2-Benzhydrylcarbamoyl-9-[(2’-hydroxyethoxy)methyl]guanine (12)
之 HPLC chromatogram …………..………….……………………49
N2-Benzhydrylcarbamoyl-9-[(2’-hydroxyethoxy)methyl]guanine (12)
之UV spectrum ………….……….…………………………….. 50
N2-2’’,2’’-Diphenylethylcarbamoyl-9-[(2’-hydroxyethoxy)methyl]
guanine (13)之1H NMR spectrum ……….….…………....……… 50
N2-2’’,2’’-Diphenylethylcarbamoyl-9-[(2’-hydroxyethoxy)methyl]
guanine (13)之13C NMR spectrum …..….………...………….….. 51
N2-2’’,2’’-Diphenylethylcarbamoyl-9-[(2’-hydroxyethoxy)methyl]
guanine (13)之IR spectrum ..…….………………...…………….. 51
N2-2’’,2’’-Diphenylethylcarbamoyl-9-[(2’-hydroxyethoxy)methyl]
guanine (13)之HPLC chromatogram.……………...…………….. 52
N2-2’’,2’’-Diphenylethylcarbamoyl-9-[(2’-hydroxyethoxy)methyl]
guanine (13)之UV spectrum ..…….………………...…………….. 52
N2-3’’,3’’-Diphenylpropylcarbamoyl-9-[(2’-hydroxyethoxy)methyl]
guanine (14)之1H NMR spectrum ….……………….…………… 53
N2-3’’,3’’-Diphenylpropylcarbamoyl-9-[(2’-hydroxyethoxy)methyl]
guanine (14)之13C NMR spectrum ….….………….……….…….. 53
N2-3’’,3’’-Diphenylpropylcarbamoyl-9-[(2’-hydroxyethoxy)methyl]
guanine (14)之IR spectrum...…………………………….……….. 54
N2-3’’,3’’-Diphenylpropylcarbamoyl-9-[(2’-hydroxyethoxy)methyl]
guanine (14)之HPLC chromatogram.……………...…………….. 54
N2-3’’,3’’-Diphenylpropylcarbamoyl-9-[(2’-hydroxyethoxy)methyl]
guanine (14)之UV spectrum...…………………………….………. 55
N2-3’’,3’’-Diphenylallylcarbamoyl-9-[(2’-hydroxyethoxy)methyl]
guanine (15)之1H NMR spectrum ….……..……………………… 55
N2-3’’,3’’-Diphenylallylcarbamoyl-9-[(2’-hydroxyethoxy)methyl]
guanine (15)之13C NMR spectrum ……………………………….. 56
N2-3’’,3’’-Diphenylallylcarbamoyl-9-[(2’-hydroxyethoxy)methyl]
guanine (15)之IR spectrum …………………………..….…….. 56
N2-3’’,3’’-Diphenylallylcarbamoyl-9-[(2’-hydroxyethoxy)methyl]
guanine (15)之HPLC chromatogram……….………………………57
N2-3’’,3’’-Diphenylallylcarbamoyl-9-[(2’-hydroxyethoxy)methyl]
guanine (15)之UV spectrum …………………………..….…….. 57
N2-4’’,4’’-Diphenylbut-3-en-carbamoyl-9-[(2’-hydroxyethoxy)methyl]
guanine (16)之1H NMR spectrum ………….…………………...…58
N2-4’’,4’’-Diphenylbut-3-en-carbamoyl-9-[(2’-hydroxyethoxy)methyl]
guanine (16)之13C NMR spectrum ……………………….…...….. 58
N2-4’’,4’’-Diphenylbut-3-en-carbamoyl-9-[(2’-hydroxyethoxy)methyl]
guanine (16)之IR spectrum …………….………………………...59
N2-4’’,4’’-Diphenylbut-3-en-carbamoyl-9-[(2’-hydroxyethoxy)methyl]
guanine (16)之HPLC chromatogram……….………………………59 N2-4’’,4’’-Diphenylbut-3-en-carbamoyl-9-[(2’-hydroxyethoxy)methyl]
guanine (16)之UV spectrum …………….………………………...60
N2-Benzhydrylcarbamoyl-9-[2’-O-(tert-butyldimethylsilyl)methyl]
guanine (21)之1H NMR spectrum ..…..……………….…………60
N2-Benzhydrylcarbamoyl-9-[2’-O-(tert-butyldimethylsilyl)methyl]
guanine (21)之13C NMR spectrum …………..……………..…….. 61
N2-Benzhydrylcarbamoyl-9-[2’-O-(tert-butyldimethylsilyl)methyl]
guanine (21)之IR spectrum ………..………………………….….. 61
N2-Benzhydrylcarbamoyl-9-[2’-O-(tert-butyldimethylsilyl)methyl]
guanine (21)之HPLC chromatogram……….………………………62
N2-Benzhydrylcarbamoyl-9-[2’-O-(tert-butyldimethylsilyl)methyl]
guanine (21)之UV spectrum ………..……………..……….….. 62
N2-(2’’,2’’-Diphenylethylcarbamoyl)-9-[2’-O-(tert-butyldimethylsilyl)
methyl]guanine (22)之1H NMR spectrum ………..……………… 63
N2-(2’’,2’’-Diphenylethylcarbamoyl)-9-[2’-O-(tert-butyldimethylsilyl)
methyl]guanine (22)之13C NMR spectrum ……………….…….. 63
N2-(2’’,2’’-Diphenylethylcarbamoyl)-9-[2’-O-(tert-butyldimethylsilyl)
methyl]guanine (22)之IR spectrum …..…………………….…….. 64
N2-(2’’,2’’-Diphenylethylcarbamoyl)-9-[2’-O-(tert-butyldimethylsilyl)
methyl]guanine (22)之HPLC chromatogram ….…………………64
N2-(2’’,2’’-Diphenylethylcarbamoyl)-9-[2’-O-(tert-butyldimethylsilyl)
methyl]guanine (22)之UV spectrum …..………………….…….. 65
N2-(3’’,3’’-Diphenylpropylcarbamoyl)-9-[2’-O-(tert-butyldimethylsilyl)
methyl]guanine (23)之1H NMR spectrum ………….……..……. 65
N2-(3’’,3’’-Diphenylpropylcarbamoyl)-9-[2’-O-(tert-butyldimethylsilyl)
methyl]guanine (23)之13C NMR spectrum …………………….…. 66
N2-(3’’,3’’-Diphenylpropylcarbamoyl)-9-[2’-O-(tert-butyldimethylsilyl)
methyl]guanine (23)之IR spectrum ……..….……...…….………66
N2-(3’’,3’’-Diphenylpropylcarbamoyl)-9-[2’-O-(tert-butyldimethylsilyl)
methyl]guanine (23)之HPLC chromatogram ….…………………67
N2-(3’’,3’’-Diphenylpropylcarbamoyl)-9-[2’-O-(tert-butyldimethylsilyl)
methyl]guanine (23)之UV spectrum ……..….……...…….………67
N2-(3’’,3’’-Diphenylallylcarbamoyl)-9-[(2’-O-tert-butyldimethylsilyl)
methyl]guanine (31)之1H NMR spectrum .…..…….……………. 68
N2-(3’’,3’’-Diphenylallylcarbamoyl)-9-[(2’-O-tert-butyldimethylsilyl)
methyl]guanine (31)之13C NMR spectrum ….……………………. 68
N2-(3’’,3’’-Diphenylallylcarbamoyl)-9-[(2’-O-tert-butyldimethylsilyl)
methyl]guanine (31)之IR spectrum ………..……….……….……. 69
N2-(3’’,3’’-Diphenylallylcarbamoyl)-9-[(2’-O-tert-butyldimethylsilyl)
methyl]guanine (31)之HPLC chromatogram ….…..………………69
N2-(3’’,3’’-Diphenylallylcarbamoyl)-9-[(2’-O-tert-butyldimethylsilyl)
methyl]guanine (31)之UV spectrum ………..……….…….……. 70
N2-(4’’,4’’-Diphenylbut-3-en-carbamoyl)-9-[(2’-O-(tert-butyldimethylsilyl)methyl]guanine (32)之1H NMR spectrum …..………..………...…. 70
N2-(4’’,4’’-Diphenylbut-3-en-carbamoyl)-9-[(2’-O-(tert-butyldimethylsilyl)
methyl]guanine (32)之13C NMR spectrum ………..………………. 71
N2-(4’’,4’’-Diphenylbut-3-en-carbamoyl)-9-[(2’-O-(tert-butyldimethylsilyl)
methyl]guanine (32)之IR spectrum ………..………….….………. 71
N2-(4’’,4’’-Diphenylbut-3-en-carbamoyl)-9-[(2’-O-(tert-butyldimethylsilyl)
methyl]guanine (32)之HPLC chromatogram………...….………. 72
N2-(4’’,4’’-Diphenylbut-3-en-carbamoyl)-9-[(2’-O-(tert-butyldimethylsilyl)
methyl]guanine (32)之IR spectrum ………..………….….………. 72
參考文獻 1. Neyts, J.; Leyssen, P.; Clercq, E. Molecular strategies to inhibit the replication of RNA viruses. Antivir. Res. 2008, 78, 9–25.
2. Seventh Framework Programme home page, http://cordis.europa.eu/fp7/home_en.html
3. Sanjuan, R.; Elena, S. F. Adaptive value of high mutation rates of RNA viruses: separating causes from consequences. J. Virol. 2005, 79, 11555–11558.
4. Charles, P. Enterovirus 71 in the Asia-Pacific region: An emergingcause of acute neurological disease in young children. Neur J. South. 2003, 8, 57–63.
5. Costenaro, L.; Arnan, C. Janowski, R.; Sola, M. Structural Basis for Antiviral Inhibition of the Main Protease, 3C, from Human Enterovirus. J. Virol. 2011, 20,10765–10773.
6. Sanden, S. V.; Koopmans, M. Epidemiology of Enterovirus 71 in The Netherlands, 1963 to 2008. J. Clin. Microbiol. 2009, 47, 2826–2833.
7. Oberste, M. S.; Maher, K.; Kilpatrick, D. R.; Pallansch, M. A. Molecular Evolution of the Human Enteroviruses: Correlation of Serotype with VP1 Sequence and Application toPicornavirus Classification. J. Virol. 1999, 73, 1941–1948.
8. Ke, Y.-Y.; Lin, T.-H. Modeling the Ligand-Receptor Interaction for a Series of Inhibitors of the Capsid Protein of Enterovirus 71 Using Several Three-Dimensional Quantitative Structure-Activity Relationship Techniques. J. Med. Chem. 2006, 49, 4517–4525.
9. Oberste, M. S.; Maher, K.; Brown, B. A. Typing of Human Enteroviruses by Partial Sequencing of VP1. Clin. Microbiol.1999, 37, 1288–1293.
10. Solomon, T.; Ooi, M. H.; Perera, D. Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet. Infect. 2010, 10, 778–790.
11. Lee, M. S.; Tseng, F. C.; Wang, J. R.; Chi, C. Y. Challenges to Licensure of Enterovirus 71 Vaccines. Negl. Trop. Dis. 2012, 6, 1737–1743.
12. Ooi, H. M.; Wong, S. C.; Podin, Y.; Akin, W.; Perera, D. Human Enterovirus 71 Disease in Sarawak, Malaysia: A Prospective Clinical, Virological, and Molecular Epidemiological Study. Clin. Infect. Dis. 2007, 44, 646–656.
13. Schmidt, N. J.; Lennette, E. H.; Ho, H. H. An apparently new enterovirus isolated from
patients with disease of the central nervous system J. Infect.Dis. 1974, 129, 304–309.
14. Wu, C.-Y.; Wang, H.-C.; Wang, K.-T.; Weng, S.-C.; Chang, W.-H.; Shih, D. Y.-C.; Lo,
C.-F.; Wang, D.-Y. Neutralization of five subgenotypes of enterovirus 71 by Taiwanese human plasma and Taiwanese plasma derived intravenous immunoglobulin. Biologicals 2013, 41, 154–157.
15. McMinn, P. C. Recent advances in the molecular epidemiology and control of human enterovirus 71 infection. Curr. Opin. Virol. 2012, 2, 199–205.
16. Huang, M.-L.; Chiang, P.-S.; Chia, M.-Y.; Luo, S.-T.; Chang, L.-Y.; Lin, T.-Y.;
Ho, M.-S.; Lee, M.-S. Cross-reactive neutralizing antibody responses to enterovirus 71 infections in young children: implications for vaccine development.
PLoS Negl. Trop. Dis. 2013, 7, e2067, 1–9.
17. Tee, K. K.; Chan, Y. F.; Bible, J. M.; Evolutionary Genetics of Human Enterovirus 71: Origin, Population Dynamics, Natural Selection, and Seasonal Periodicityof the VP1 Gene. J. Virol. 2010, 7, 3339–3350.
18. Wong, S.; Solomon, T. Clinical features, diagnosis, and management ofenterovirus 71. Neurol.Rev .2010, 9, 1097–1105.
19. Lin, T.-Y.; Twu, S.-J.; Ho, M.-S.; Chang, L.-Y.; Lee, C.-Y. Enterovirus 71 Outbreaks, Taiwan:Occurrence and Recognition. Emerging Infectious Diseases. 2003, 9, 291–293.
20. Hsueh, C.; Jung, S.-M.; Shin, S.-R; Kuo, T.-T.; Shieh, W.-J.; Zaki, S.; Lin, T.-Y.; Chang, L.-Y.; Ning, H.-C.; Yen, D. Acute Encephalomyelitis during an Outbreak of Enterovirus Type 71 Infection in Taiwan: Report of an Autopsy Case with Pathologic, Immunofluorescence, and Molecular Studies. Modern Patholog. 2000, 13,1200–1205.
21. Ooi, M. H.; Wong, S. C.; Podin, D.; Podin, Y. Identification and validation of clinical predictors for the risk of neurological involvement in children with hand, foot, and mouth disease in Sarawak. infet. Dis. 2009, 9, 1471–1483.
22. Hwu, J. R.; Lin, S.-Y.; Tsay, S.-C.; Clercq, E. D.; Leyssen, P.; Neyts, J. Coumarin-Purine Ribofuranoside Conjugates as New Agents against Hepatitis C Virus. J. Med. Chem. 2011, 54, 2114–2126.
23. Bacon, T. H., Levin, M. J., Leary, J. J., Sarisky, R. T., Sutton, D. Herpes Simplex Virus Resistance to Acyclovir and Penciclovir after Two Decades of Antiviral TherapyTwo Decades of Antiviral Therapy. Clin. Microbiol. Rev. 2003, 16, 114–128.
24. Balannik, V.; Wang, J.; Ohigashi, Y.; Jing, X.; Magavern, E.; Lamb, R. A.; DeGrado, W. F.; Pinto, L. H. Design and Pharmacological Characterization of Inhibitors of Amantadine-Resistant Mutants of the M2 Ion Channel of Influenza A Virus. Biochemistry 2009, 48, 11872–11882.
25. Pub.Chem. home page. http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?cid=4543
26. Pletsas, D.; Wheelhouse, R. T.; Pletsa, V.; Nicolaou, A.; Jenkin, T. C.; Bibby, M. C.;
Kyrtopoulos, S. A. Polar, functionalized guanine-O6 derivatives resistant to repair by O6-alkylguanine–DNA alkyltransferase: implications for the design of DNA-modifying drugs. Eur. J. Med. Chem. 2006, 41, 330–339.
27. Bible, J. M.; Pantelidis, P.; Chan, P. K.; Tong, C. Y. Genetic evolution of enterovirus 71: epidemiological and pathological implications. Rev. Med. Virol. 2007, 17, 371–379.
28. Gao, H.; Mitra, A. K. Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry. Synth. Commum. 2001,31, 1399–1419.
29. Sasse, A.; Stark, H.; Ligneau, X.; Elz, S.; Reidemeister, S.; Ganellin, C. R.;Schwartz, J. C.; Schwartz, W. (Partial) Agonist/Antagonist Properties of Novel Diarylalkyl Carbamates on Histamine H3 Receptors. Bioorg. Med. Chem. 2000, 8, 1139–1149.
30. Kapurya, N.; Kapurya, K.; Dong, H.; Zhang, X.; Chou, T.-C.; Chen, Y. -T.; Lee, T. C.;
Lee, W. -C.; Tsai, T. -H.; Naliapara, Y.; Su, T, -L. Novel DNA-directed alkylating agents: Design, synthesis and potent antitumor effect of phenyl N-mustard-9-anilinoac
-ridine conjugates via a carbamate or carbonate linker. Bioorg. Med. Chem. 2009, 17, 1264–1275.
31. Li, J.; Chen, J.; Zhang, L.; Wang, F.; Gui, C.; Zhang, L.; Qin, Y.; Xu. Q.; Liu, H.;
Nan, F.; Shen, J. Bai, D.; Chen, K.; Shen, X.; Jiang, H. One novel quinoxaline derivative as a potent human cyclophilin A inhibitor shows highly inhibitory activity against mouse spleen cell proliferation. Bioorg. Med. Chem. 2006, 14, 5527–5534.
32. Dziadulewicz, E. D.; Ritchie, T. J.; Hallett, A.; Snell, C. R.; Davies, J. W.; Wrigglesworth, R.; Dunstan, A. R.;Bloomfield, C. C.; Drake, G. S.; McIntyre, P.;
Brown, M. C.; Burgess, G. M.; Lee, W. Davis, C.; Yaqoob, M.; Phagoo, S. B.; Phillips, E.; Perkins, M. N.; Campbell, E. A.; Davis, A. J.; Rang, H. P. Nonpeptide Bradykinin B2 Receptor Antagonists: Conversion of Rodent-Selective Bradyzide Analogues into Potent, Orally-Active Human Bradykinin B2 Receptor Antagonists1 J. Med. Chem. 2002, 45,
2160-2172.
33. Ishikawa, M.; Hashimoto, Y. Improvement in Aqueous Solubility in Small Molecule Drug DiscoveryPrograms by Disruption of Molecular Planarity and Symmetry. J. Med. Chem. 2011, 54, 1539–1554
34. Park, T.; Todd, E. M.; Nakashima, S.; Zimmerman, S. C. A Quadruply Hydrogen Bonded Heterocomplex Displaying High-Fidelity Recognition. J. Am. Chem. Soc. 2005, 127, 18133–18142.
35. Brown, J. R.; North, E. J.; Hurdle, J. G.; Morisseau, C.; Scarborough, J. S.; Sun, D.; Kordulakova, J.; Scherman, M. S.; Jones, V.; Crew, R. M.; Jackson, M.; McNeil, M. R.; Lee, E. E. The structure–activity relationship of urea derivatives as anti-tuberculosis agents. Bioorg. Med. Chem. 2011, 19, 5585–5595.
36. Shelton, J. R.; Cutler, C. E.; Oliveira, M.; Balzarini, J.; Peterson, M. A. Synthesis, SAR, and preliminary mechanistic evaluation of novel antiproliferative N6,5’-bis-ureido- and 5’-carbamoyl-N6-ureidoadenosine derivatives. Bioorg. Med. Chem. 2012, 20, 1008–1019.
37. Peterson, M. A.; Ke, P.; Shi. H.; Jones, C.; McDougall, B. R.; Robinson, W. E.; Jr. Design, Synthesis, and Antiviral Evaluation of Some 3′-Carboxymethyl-3′-
Deoxyadenosine Derivatives. Nucleosides, Nucleotides, and Nucleic Acids. 2007, 26, 499–519.
38. Gerard, S.; Marchand-Brynaert, Protecting group migration in the chemistry of 1-t-butyldimethylsilyl-4-hydroxymethyl-2-azetidinone. J. Tetrahedron Lett. 2003, 44, 6339–6342.
39. Bent, A. V. D.; Blommaert, A. G. S.; Melman, C. T. M.; IJzerman, A. P.; Wijngaarden, I. V.; Soudijn, W. J. Am. Chem. 1992, 35, 1042-1049
40. Schaffert, E. S.; Hofner, G.; Wanner, K. T. Aminomethyltetrazoles as potential inhibitors of the c-aminobutyric acid transporters mGAT1–mGAT4: Synthesis and biological evaluation. Bioorg. Med. Chem. 2011, 19, 6492–6504.
41. Spino, C.; Joly, M. A.; Godbout, C.; Arbour, M. Ti-Catalyzed Reactions of Hindered Isocyanates with Alcohols. J. Org. Chem. 2005, 70, 6118-6121
42. Hassner, A.; Hoblitt, R. P.; Heathcock, C.; Kropp, J. E.; Lorber, M. J. Am. Chem. 1969, 11, 1326–1331.
43. Yilgor, I.; Mather, B. D.; Unal, S.; Yilgor, E.; Long, T. E. Preparation of segmented, high molecular weight, aliphatic poly(ether-urea) copolymers in isopropanol. In-situ ‘FTIR studies and polymer synthesis. Polymer. 2004, 45, 5829–5836.
44. For a book detailing these methods, see: Pavia, D. L.; Lampman, G. M.; Kriz, G. S.; Vyvyan, J. R. Introduction to Spectroscopy, 4th edition; Brooks/Cole: Belmont, CA, 2009.
45. Discover studio client home page.
http://accelrys.com/products/discovery-studio/references.html
46. Kraszni, M.; Banyai, I.; Noszal, B. Determination of Conformer-Specific Partition Coefficients in Octanol/Water. J. Med. Chem. 2003, 46, 2241–2245.
47. For a book detailing these methods, see: Kerns, E. H.; Di, L. in Drug-like Properties: Concepts, Structure Design and Methods; ADME to Toxicity Optimization, 2008, 1st edition, Chapter 5, 43–47.
指導教授 胡紀如(Jih-Ru Hwu) 審核日期 2013-8-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明