博碩士論文 100223053 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:54.81.220.239
姓名 吳承剛(Cheng-Gang Wu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用
★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用
★ 中孔洞碳材於高效能鋰離子電池之應用★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用
★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用
★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用★ 以金屬氧化物ZnO及MgO修飾有序中孔洞碳材CMK-8於高效能鋰離子電池之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文實驗第一部分是利用三聚氯氰CC與三嵌段高分子 ED2003 脫去聚合形成長鏈狀高分子,再加入適量的 ED2003 接在此高分子的側端形成分枝狀高分子,之後再將此高分子各別接上無機矽氧烷 GLYMO,最後添加不同濃度的鋰鹽 LiClO4,合成出長鏈分枝型結構的有機無機固態高分子電解質。本研究對高分子的重複單元多寡做比較,找出最佳單元數目,之後對摻雜鋰鹽濃度不同,做一系列結構鑑定與電化學研究的探討。
第一部分經由分析研究過後,選定離子導電度較高的重複單元高分子主體為 CEG(9),並由離子導電度測得出在室溫下最佳的導電度為樣品CEG(9)-32,可達 1.61 × 10-4 S cm-1,並且氧化裂解電壓可達 4.0 V,且樣品 CEG(9)-32 也有較高的離子遷移數目為 0.330,這可以表明此固態高分子電解質應用於鋰電池上面是非常具有潛力與前途性的。
第二部分將 CEG(9)-∞ 吸附含有不同鋰鹽之有機液態電解液,將其製備成膠態高分子電解質;發現離子導電度在室溫中最佳導電度的樣品為 CEG(9)-∞ 吸附 1 M LiPF6 in EC/DEC (1:1,v/v),可達到6.48 × 10-3 S cm-1,並可承受電壓範圍約在 4.0 V,最後以 CEG(9)-∞ 吸附 1 M LiPF6 in EC/DEC (1:1,v/v) 組裝成鋰電池以固定的充放電速率 0.2 C 來測試電池的穩定效能測試,起始電容量約達 117 mAh g-1,並可發現此電解質在前30個循環是較穩定的,之後加以研究改質是適合應用於鋰電池當中。
摘要(英) A new hyperbranched organic–inorganic hybrid electrolyte membrane based on triblock co-polymer poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) bis(2-aminopropyl ether) (ED2003), 2,4,6-trichloro-1,3,5-triazine (CC), 3-(glycidyloxypropyl)trimethoxysilane (GLYMO) and Lithium perchlorate (LiClO4) has been synthesized by a sol–gel process and characterized by a variety of experimental techniques. A maximum ionic conductivity of 1.61 × 10−4 S cm−1, a relatively high value for solid polymer electrolytes, was achieved at 30 ◦C for the hybrid electrolyte with a [O]/[Li] ratio of 32, high value of Li+ transference number (t+ = 0.330) and with sufficient electrochemical stability up to 4.0 V. The hybrid organic-inorganic electrolyte is a potential polymer electrolyte for solid state rechargeable lithium polymer batteries
The hybrid membrane is plasticized with different electrolyte solvents and exhibits remarkable swelling ratios in the range of 700–800 %. The ionic conductivity of the hybrid electrolyte membranes is varied with different electrolyte solvents and shows a maximum value of 6.48 × 10−3 S cm−1 for 1 M LiPF6 in EC/DEC at 30 °C and with sufficient electrochemical stability up to 4.0 V. The test cell carries initial discharge capacity of 117 mAh g−1 at a current rate of 0.2 C and shows good cycling performance up to 30 cycles and coulombic efficiency of 90 % for the entire cycles. The plasticized organic–inorganic hybrid electrolyte membrane holds promise for applications in lithium polymer batteries.
關鍵字(中) ★ 固態高分子電解質
★ 膠態高分子電解質
★ 鋰電池
★ 導電度
★ 核磁共振
★ 電池測試
關鍵字(英) ★ solid polymer electrolyte
★ gel polymer electrolyte
★ lithium battery
★ conductivity
★ NMR
★ battery test
論文目次 目錄
中文摘要...................................................I
英文摘要..................................................II
謝誌.....................................................III
圖目錄..................................................VIII
表目錄....................................................XI
第一章 前言................................................1
1-1. 簡介..................................................1
1-2. 文獻回顧..............................................3
1-2-1. 鋰二次電池..........................................3
1-2-2. 鋰高分子電池........................................6
1-2-3. 高分子電解質........................................8
1-2-4. 固態高分子電解質...................................12
1-2-5. 膠態高分子電解質...................................18
1-2-6. 鋰離子鹽類.........................................22
第二章 研究規劃...........................................27
2-1. 研究動機.............................................27
2-1-1.含三氮環交聯之高分子................................27
2-1-2. 具環氧基的矽源材料.................................29
2-2. 研究方向.............................................30
2-3. 研究架構.............................................31
第三章 實驗部分與原理.....................................32
3-1. 實驗藥品.............................................32
3-2. 儀器設備.............................................34
3-3. 高分子電解質膜之製備.................................35
3-3-1. 固態高分子電解質製備...............................35
3-3-2. 膠態高分子電解質製備...............................38
3-3-3. 硬幣型 2032 型電池組裝.............................39
3-4. 儀器分析原理.........................................40
3-4-1. 熱重量分析儀 (Thermo Gravimetric Analyzer, TGA)....40
3-4-2. 微差掃描熱卡計 (Differential Scanning Calorimeter, DSC)......................................................41
3-4-3. 傅立葉紅外線吸收光譜儀 (FTIR)......................43
3-4-4. 交流阻抗分析儀 (AC Impedance)......................44
3-4-5. 掃描式電子顯微鏡 (Scanning Electron Microscopy, SEM)......................................................48
3-4-6. 固態核磁共振 (Solid State NMR).....................49
3-4-7. 線性掃描電位測試 (Linear Sweep Voltammetry, LSV)...62
3-4-8. 鋰離子遷移數目測試 (transference number)...........64
3-4-9. 電池性能測試 (Charge-Discharge test)...............67
第四章 結果與討論.........................................68
4-1. 固態高分子電解質 CEG(N)-X............................68
4-1-1. 長鏈分枝型固態高分子電解質.........................68
4-1-2. 重複單元高分子主體.................................69
4-1-3. 熱重量分析.........................................72
4-1-4. 微差式掃描熱卡計分析...............................74
4-1-5. 紅外線吸收光譜之鑑定分析...........................78
4-1-6. 掃描式電子顯微鏡之表面分析.........................84
4-1-7. 交流阻抗儀之離子導電度測試.........................86
4-1-8. 固態核磁共振光譜儀分析.............................90
4-1-9. 線性掃描伏安法....................................110
4-1-10. 鋰離子遷移數目測試...............................112
4-2. 膠態高分子電解質 CEG(N)-∞..........................115
4-2-1. 長鏈分枝型膠態高分子電解質........................115
4-2-2. 電解質吸附之澎潤比測試............................116
4-2-3. 交流阻抗儀之離子導電度測試........................119
4-2-4. 線性掃描伏安法....................................122
4-2-5. 電池性能測試......................................124
第五章 結論..............................................129
參考文獻.................................................131
附錄.....................................................135
固態高分子電解質 CEI(N)-X................................135
實驗步驟.................................................135
重複單元高分子主體.......................................136
微差式掃描熱卡計分析.....................................139
紅外線吸收光譜之鑑定分析.................................142
交流阻抗儀之離子導電度測試...............................145
線性掃描伏安法...........................................148
參考文獻 (1) Tarascon, J. M. A., M. Nature 2001, 414, 359.
(2) 陳玉惠; 陳羿廷 Chemistry 2004, 62, 445.
(3) Hajek, J. French Patent 1949, 8.
(4) Peled, E. J. Electrochem. Soc. 1979, 126, 2047.
(5) Peled, E.; Golodnitsky, D.; Ardel, G.; Eshkenazy, V. Electrochim. Acta 1995, 40, 2197.
(6) Xu, K. Chem. Rev. 2004, 104, 4303.
(7) Yamaki, J.-i.; Tobishima, S.-i.; Hayashi, K.; Keiichi, S.; Nemoto, Y.; Arakawa, M. J. Power Sources 1998, 72, 219.
(8) Matsui, T.; Takeyama, K. Electrochim. Acta 1995, 40, 2165.
(9) Osaka, T.; Homma, T.; Momma, T.; Yarimizu, H. J. Electroanal. Chem. 1997, 421, 153.
(10) Yoshimatsu, I.; Hirai, T.; Yamaki, J.-i. J. Electrochem. Soc. 1988, 135, 2422.
(11) Sekai, K.; Azuma, H.; Omaru, A.; Fujita, S.; Imoto, H.; Endo, T.; Yamaura, K.; Nishi, Y.; Mashiko, S.; Yokogawa, M. J. Power Sources 1993, 43, 241.
(12) Mohri, M.; Yanagisawa, N.; Tajima, Y.; Tanaka, H.; Mitate, T.; Nakajima, S.; Yoshida, M.; Yoshimoto, Y.; Suzuki, T.; Wada, H. J. Power Sources 1989, 26, 545.
(13) 動能科技; http://www.exa.com.tw/exa/chinese/comparison.htm.
(14) Fenton, D. E.; Parker, J. M.; Wright, P. V. Polymer 1973, 14, 589.
(15) Wright, P. V. Br. Polym. J. 1975, 7, 319.
(16) Armand, M. B.; Chabagno, J. M.; Duclot, M. Second International Meeting on Solid Electrolytes 1978, 20.
(17) Armand, M. B.; Chabagno, J. M.; Duclot, M. Fast ion Transport in Solids. Electrodes and Electrolytes 1979, 131.
(18) Wright, P. V. Electrochim. Acta 1998, 43, 1137.
(19) Ratner, M. A.; Shriver, D. F. Chem. Rev. 1988, 88, 109.
(20) Berthier, C.; Gorecki, W.; Minier, M.; Armand, M. B.; Chabagno, J. M.; Rigaud, P. Solid State Ionics 1983, 11, 91.
(21) Meyer, W. H. Adv. Mater. 1998, 10, 439.
(22) Song, J. Y.; Wang, Y. Y.; Wan, C. C. J. Electrochem. Soc. 2000, 147, 3219.
(23) Fauteux, D.; Massucco, A.; McLin, M.; Van Buren, M.; Shi, J. Electrochim. Acta 1995, 40, 2185.
(24) Murata, K.; Izuchi, S.; Yoshihisa, Y. Electrochim. Acta 2000, 45, 1501.
(25) Blonsky, P. M.; Shriver, D. F.; Austin, P.; Allcock, H. R. J. Am. Chem. Soc. 1994, 106, 6854.
(26) Walker, J.; W., C.; Salomon, M. J. Electrochem. Soc. 1993, 140, 3409.
(27) Andrieu, X.; Fauvarque, J. F.; Goux, A.; Hamaide, T.; M’Hamdi, R.; Vicedo, T. Electrochim. Acta 1995, 40, 2295.
(28) Lu, Q.; Fang, J.; Yang, J.; Yan, G.; Liu, S.; Wang, J. J. Membrane Sci. 2013, 425–426, 105.
(29) Yang, H.-Y.; Wu, G.; Chen, H.; Yuan, F.; Wang, M.; Fu, R.-J. J. Appl. Polym. Sci. 2006, 101, 461.
(30) Higa, M.; Fujino, Y.; Koumoto, T.; Kitani, R.; Egashira, S. Electrochim. Acta 2005, 50, 3832.
(31) Zhang, Z.; Sherlock, D.; West, R.; West, R.; Amine, K.; Lyons, L. J. Macromolecules 2003, 36, 9176.
(32) Kaskhedikar, N.; Burjanadze, M.; Karatas, Y.; Wiemhöfer, H. D. Solid State Ionics 2006, 177, 3129.
(33) Weston, J. E.; Steele, B. C. H. Solid State Ionics 1982, 7, 75.
(34) Croce, F.; Curini, R.; Martinelli, A.; Persi, L.; Ronci, F.; Scrosati, B.; Caminiti, R. J. Phys. Chem. B 1999, 103, 10632.
(35) Prasanth, R.; Shubha, N.; Hng, H. H.; Srinivasan, M. European Polymer Journal 2013, 49, 307.
(36) Wu, G. M.; Lin, S. J.; Yang, C. C. J. Membrane Sci. 2006, 275, 127.
(37) Abraham, K. M.; Alamgir, M. Solid State Ionics 1994, 70–71, Part 1, 20.
(38) Chintapalli, S.; Frech, R. Solid State Ionics 1996, 86–88, Part 1, 341.
(39) Borghini, M. C.; Mastragostino, M.; Zanelli, A. Electrochim. Acta 1996, 41, 2369.
(40) Cha, E. H.; Macfarlane, D. R.; Forsyth, M.; Lee, C. W. Electrochim. Acta 2004, 50, 335.
(41) Watanabe, M.; Kanba, M.; Nagaoka, K.; Shinohara, I. J. Appl. Polym. Sci. 1982, 27, 4191.
(42) Yang, C. R.; Perng, J. T.; Wang, Y. Y.; Wan, C. C. J. Power Sources 1996, 62, 89.
(43) Iijima, T.; Toyoguchi, Y.; Eda, N. Denki Kagaku 1985, 55, 619.
(44) Appetecchi, G. B.; Croce, F.; Scrosati, B. Electrochim. Acta 1995, 40, 991.
(45) Quartarone, E.; Tomasi, C.; Mustarelli, P.; Appetecchi, G. B.; Croce, F. Electrochim. Acta 1998, 43, 1435.
(46) Mary Sukeshini, A.; Nishimoto, A.; Watanabe, M. Solid State Ionics 1996, 86–88, Part 1, 385.
(47) Alamgir, M.; Abraham, K. M. J. Electrochem. Soc. 1993, 140, L96.
(48) Jiang, Z.; Carroll, B.; Abraham, K. M. Electrochim. Acta 1997, 42, 2667.
(49) Dias, F. B.; Plomp, L.; Veldhuis, J. B. J. J. Power Sources 2000, 88, 169.
(50) Dudley, J. T.; Wilkinson, D. P.; Thomas, G.; LeVae, R.; Woo, S.; Blom, H.; Horvath, C.; Juzkow, M. W.; Denis, B.; Juric, P.; Aghakian, P.; Dahn, J. R. J. Power Sources 1991, 35, 59.
(51) Tarascon, J. M.; Guyomard, D. Solid State Ionics 1994, 69, 293.
(52) Aurbach, D.; Zaban, A.; Schechter, A.; Ein‐Eli, Y.; Zinigrad, E.; Markovsky, B. J. Electrochem. Soc. 1995, 142, 2873.
(53) Newman, G. H.; Francis, R. W.; Gaines, L. H.; Rao, B. M. L. J. Electrochem. Soc. 1980, 127, 2025.
(54) Yoshimatsu, I.; Hirai, T.; Yamaki, J. i. J. Electrochem. Soc. 1988, 135, 2422.
(55) Takata, K. i.; Morita, M.; Matsuda, Y.; Matsui, K. J. Electrochem. Soc. 1985, 132, 126.
(56) Ue, M.; Mori, S. J. Electrochem. Soc. 1995, 142, 2577.
(57) Lu, G.; Miura, N.; Yamazoe, N. J. Electrochem. Soc. 1996, 143, L154.
(58) Naoi, K.; Mori, M.; Naruoka, Y.; Lamanna, W. M.; Atanasoski, R. J. Electrochem. Soc. 1999, 146, 462.
(59) Armand, M.; Gorecki, W.; Andreani, R. Poceeding of the 2nd Interational Meeting on Polymer Electrolytes 1989, p 91.
(60) Webber, A. J. Electrochem. Soc. 1991, 138, 2586.
(61) Dominey, L. A.; Koch, V. R.; Blakley, T. J. Electrochim. Acta 1992, 37, 1551.
(62) Yang, H.; Kwon, K.; Devine, T. M.; Evans, J. W. J. Electrochem. Soc. 2000, 147, 4399.
(63) Kawamura, T.; Kimura, A.; Egashira, M.; Okada, S.; Yamaki, J.-I. J. Power Sources 2002, 104, 260.
(64) Sloop, S. E.; Pugh, J. K.; Wang, S.; Kerr, J. B.; Kinoshita, K. Electrochem. Solid-State Lett. 2001, 4, A42.
(65) Krause, L. J.; Lamanna, W.; Summerfield, J.; Engle, M.; Korba, G.; Loch, R.; Atanasoski, R. J. Power Sources 1997, 68, 320.
(66) Koksbang, R.; Olsen, I. I.; Shackle, D. Solid State Ionics 1994, 69, 320.
(67) Itoh, T.; Ikeda, M.; Hirata, N.; Moriya, Y.; Kubo, M.; Yamamoto, O. J. Power Sources 1999, 81–82, 824.
(68) Jan, J. Z.; Huang, B. H.; Lin, J. J. Polymer 2003, 44, 1003.
(69) Tigelaar, D. M.; Meador, M. A. B.; Kinder, J. D.; Bennett, W. R. Macromolecules 2005, 39, 120.
(70) Wang, M. S.; Pinnavaia, T. J. Chem. Mater. 1994, 6, 468.
(71) Mark, H. F. J. Polym. Sci.: Polym. Lett. Ed 1981, 19, 34.
(72) Pinkwart, K.; Tübke, J. In Handbook of Battery Materials; Wiley-VCH Verlag GmbH & Co. KGaA: 2011, p 1.
(73) Schmidt-Rohr, K.; Clauss, J.; Spiess, H. W. Macromolecules 1992, 25, 3273.
(74) Stejskal, E. O.; Tanner, J. E. J. Chem. Phys. 1965, 42, 288.
(75) Chung, S. H.; Jeffrey, K. R.; Stevens, J. R. J. Chem. Phys. 1991, 94, 1803.
(76) Abragam, A. The Principles of Nuclear Magnetism 1961.
(77) olsen, I.; Koksbang, R.; Skou, E. Electrochim. Acta 1995, 40, 1701.
(78) Jannasch, P. Electrochim. Acta 2001, 46, 1641.
(79) De Paoli, M.-A.; Zanelli, A.; Mastragostino, M.; Rocco, A. M. J. Electroanal. Chem. 1997, 435, 217.
(80) Chu, P. P.; Jen, H.-P.; Lo, F.-R.; Lang, C. L. Macromolecules 1999, 32, 4738.
(81) Brown, S. D.; Greenbaum, S. G.; McLin, M. G.; Wintersgill, M. C.; Fontanella, J. J. Solid State Ionics 1994, 67, 257.
(82) Li, W.; Yang, M.; Yuan, M.; Tang, Z.; Zhang, J. Q. J. Appl. Polym. Sci. 2007, 106, 3084.
(83) Subramania, A.; Sundaram, N. T. K.; Priya, A. R.; Gangadharan, R.; Vasudevan, T. J. Appl. Polym. Sci. 2005, 98, 1891.
指導教授 高憲明(Hsien-Ming Kao) 審核日期 2013-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明