博碩士論文 100225014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.207.102.38
姓名 高帆萱(Fan-Hsuan Kao)  查詢紙本館藏   畢業系所 統計研究所
論文名稱
(An improved nonparametric estimator of distribution function for bivariate competing risks model)
相關論文
★ A control chart based on copula-based Markov time series models★ Estimation and model selection for left-truncated and right-censored data: Application to power transformer lifetime modeling
★ A robust change point estimator for binomial CUSUM control charts★ Maximum likelihood estimation for double-truncation data under a special exponential family
★ A class of generalized ridge estimator for high-dimensional linear regression★ A copula-based parametric maximum likelihood estimation for dependently left-truncated data
★ A class of Liu-type estimators based on ridge regression under multicollinearity with an application to mixture experiments★ Dependence measures and competing risks models under the generalized Farlie-Gumbel-Morgenstern copula
★ A review and comparison of continuity correction rules: the normal approximation to the binomial distribution★ Likelihood inference on bivariate competing risks models under the Pareto distribution
★ Parametric likelihood inference with censored survival data under the COM-Poisson cure models★ Likelihood-based analysis of doubly-truncated data under the location-scale and AFT models
★ Copula-based Markov chain model with binomial data★ The Weibull joint frailty-copula model for meta-analysis with semi-competing risks data
★ A general class of multivariate survival models derived from frailty and copula models: application to reliability theory★ Performance of a two-sample test with Mann-Whitney statistics under dependent censoring with copula models
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在處理競爭風險的資料時,由於造成特定物件失效的原因有許多種,因此估計特定失效物件的具體-理由分布函數是相當重要的。然而,在面對多維的失效時間時,即使是二維資料其亦具有相當難度。本篇論文中,我們考慮Sankaran 等人在 (2006) 所提出的一種無母數的二維具體-理由分布函數估計量。在此,我們提出一個改善原有方法的一種新的無母數估計量。我們以理論上以及數值上去展示我們的估計量較原有的估計量有更小的均方誤差。我們亦證明此估計量的一致性。針對此估計量的表現我們將進行模擬研究。最後我們把此有效的方法利用到老鼠與蠑螈的資料上並以3D圖來表現其效果。
摘要(英) For competing risks data, it is important to estimate the cause-specific distribution function of a particular failure event, which is the failure probability in the presence of other risks. However, if multiple failure events per subject are available, estimation procedures become challenging, even for the bivariate case. In this thesis, we consider the nonparametric estimation of bivariate cause-specific distribution function which is discussed in Sankaran et al. (2006). In particular, we propose a new nonparametric estimator which improves upon the estimator of Sankaran et al. It is shown theoretically and numerically that the proposed estimator has smaller mean square error than the existing one. The consistency of the proposed estimator is also established. A simulation study is conducted to investigate the performance of the proposed estimator. The usefulness of the method is illustrated by the salamander data and mouse data.
關鍵字(中) ★ 二維存活函數
★ 無母數估計量
★ 競爭風險
★ 具體-理由分布函數
★ 右設限
關鍵字(英) ★ Bivariate survival function
★ Nonparametric estimation
★ Competing risk
★ Cause-specific distribution function
★ Right censoring
論文目次 Contents
摘要 I
Abstract II
致 謝 詞 III
List of Figures VI
List of Tables IX
Chapter 1 Introduction 1
Chapter 2 Method 4
2.1 Estimator of Sankaran et al. (2006) 4
2.2 Independence estimator 7
2.3 Proposed estimator 8
Chapter 3 Asymptotic theory 13
Chapter 4 Simulation 19
Chapter 5 Data analysis 31
5.1 Mouse data analysis 31
5.2 Salamander data analysis 36
Chapter 6 Conclusion 41
APPENDIX A. Simulation for Negative correlation 43
APPENDIX B. R codes for calculating 50
REFERENCES 54
參考文獻 [1] M.G. Akritas, Ingrid van Keilegom, Estimation of bivariate and marginal distributions with censored data, J. R. Stat Soc, Ser. B 65 (2003) 457-471.
[2] P.K. Andersen, Borgan, R.D. Gill, N. Keiding, Statistical Models Based on Counting Processes, Springer, New York, 1993.
[3] A.A. Antony, P. G. Sankaran, Estimation of bivariate survivor function of competing risk models under censoring, J. Stat. Theory Appl. 4 (2005) 401-423.
[4] A.W. Van Der Vaart, J.A. Wellner, Weak Convergence and Empirical Process, Springer, New York, 1996.
[5] Y. Cheng, J.P. Fine, Nonparametric estimation of cause-specific cross hazard ratio with bivariate competing risks data, Biometrika 95 (2008) 233-240.
[6] Y.-H. Chen, N. Chatterjee, R.J. Carroll, Shrinkage estimators for robust and efficient inference in haplotype-based case-control studies, J. Amer. Statist Assoc. 104 (2009) 220-233.
[7] K.L. Chung, A Course in Probability Theory, Academic Press, 2001
[8] D.G. Clayton, A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence, Biometrika 65 (1978) 141-151.
[9] M.J. Crowder, Classical Competing Risks, Chapman and Hall/CRC, 2001
[10] D.M. Dabrowska, Kaplan-Meier estimate on the plane, Ann. Stat. 18 (1988) 1475-1489.
[11] D.M. Dabrowska, Kaplan-Meier estimate on the plane: weak convergence, LIL, and the bootstrap, J. Multivariate Anal. 29 (1989) 308-325.
[12] T. Emura, Y.-H. Chen, H.-Y. Chen, Survival prediction based on compound covariate under cox poportional hazard models, PLoS One 7(10) (2012) doi:10.1371 /joumal.pone.0047627.
[13] T. Emura, Y. Konno, Multivariate normal distribution approaches for dependently truncated data, Statistical Papers 53 (No.1) (2012a) 133-149.
[14] T. Emura, Y. Konno, A goodness-of-fit test for parametric models based on dependently truncated data, Comput. Statist. Data Anal. 56 (2012b) 2237-2250.
[15] R.J. Gray, A class of k-sample tests for comparing the cumulative incidence of a competing risk, Ann. Stat. 16 (1988) 1141-1154.
[16] N. Mantel, J.L. Ciminera, Use of log rank series in the analysis of litter-matched data on time to tumour appearance, Cancer Res. 39 (1979) 4308-4315.
[17] H. Michimae, T. Emura, Correlated evolution of phenotypic plasticity in metamorphic timing, J. Evol. Biol. 25 (2012) 1331-1339.
[18] P.G. Sankaran, A.A. Antony, Bivariate competing risks models under random left truncation and right censoring, Sankhya: The Indiam Journal of Statistics (2003-2007) 69 (2007) 425-447.
[19] P.G. Sankaran, J.F. Lawless, B. Abraham, A.A. Antony, Estimation of distribution function in bivariate competing risk models, Biom. J. 48 (2006) 399-410.
[20] P. Shen, Estimation of the bivariate cause-specific distribution function with doubly censored competing risks data, J. Stat. Plan. Inference 141 (2011) 2614-2621.
[21] P. Shen, Estimation of the bivariate cause-specific distribution functions with left-truncated competing risks data, Commun. Stat. Simul. Comput. 41:1 (2012) 99-110.
[22] R.L. Prentice, J. Cai, Covariate and survivor function estimation using censored multivariate failure time data, Biometrika 79 (1992) 495-512.
[23] W. Wang, M.T. Wells, Nonparametric estimations of the bivariate survival function under simplified censoring conditions, Biometrika. 84 (1997) 863-883.
指導教授 江村剛志(Takeshi Emura) 審核日期 2013-6-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明