博碩士論文 100225022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.236.231.61
姓名 翁瑄佑(Xuan-You Weng)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 台灣愛滋病實例研究- 以聯合模型探討CD4細胞數以及病毒乘載量對愛滋病患存活時間之關係
(An AIDS case study in Taiwan- The relationship between the survival time of AIDS patients and their CD4 counts and viral load using joint model to explore)
相關論文
★ 長期與存活資料之聯合模型-新方法和數值方法的改進★ 復發事件存活分析的共享廣義伽瑪脆弱因子之半母數聯合模型
★ 加乘法風險模型結合長期追蹤資料之聯合模型★ 有序雙重事件時間分析使用與時間相關的共變數-邊際方法的比較
★ 存活與長期追蹤資料之聯合模型-台灣愛滋病實例研究★ 以聯合模型探討地中海果蠅繁殖力與老化之關係
★ 聯合模型在雞尾酒療法療效評估之應用—利用CD4/CD8比值探討台灣愛滋病資料★ 時間相依共變數之雙重存活時間分析—台灣愛滋病病患存活時間與 CD4 / CD8 比值關係之案例研究
★ Cox比例風險模型之參數估計─比較部分概似法與聯合模型★ 復發事件存活時間分析-丙型干擾素對慢性肉芽病患復發療效之案例研究
★ Cox 比例風險假設之探討與擴充風險模型之應用★ 以聯合模型探討原發性膽汁性肝硬化
★ 聯合長期追蹤與存活資料分析-肝硬化病患之實例研究★ 復發事件存活時間分析-rhDNase對囊狀纖維化病患復發療效之案例研究
★ 聯合長期追蹤與存活資料分析-原發性膽汁性肝硬化病患之實例研究★ 復發事件存活時間分析-Thiotepa對膀胱癌病患復發療效之案例研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本論文中,利用CD4 細胞數以及病毒承載量來預測愛滋病患的發病時間,並探討使用雞尾酒療法與沒有使用雞尾酒療法對愛滋病患的療效。此種包含長期追蹤共變數與存活時間的資料,常會因為長期追蹤資料的測量誤差或生物體本身的差異,以及共變數觀測值測量與存活有關時,導致推論產生偏差,因此,本研究利用聯合模型來解決此問題,在生物指標方面,使用線性隨機效應模型對長期追蹤資料做配適,並利用概似比檢定診斷長期追蹤模型的適合度;在事件時間方面,使用Cox比例風險模型描述共變數與存活時間之關係。結合這兩部分建構出多重長期追蹤資料的聯合概似模型且利用EM演算法對參數做估計。
摘要(英) In this thesis, we use AIDS patients’ CD4 counts and viral loads to predict their onset times and explore the curative effect whether patients were treated with HAART. Usually, the study data include longitudinal and survival time information, and, in general, result in inference bias due to the measurement errors on the longitudinal part, the differences among patients themselves, or the time-dependent covariates. Thus, we use the joint model to solve this problem. The approach uses a linear random effects model to characterize the longitudinal part and conducts the likelihood test to select a suitable longitudinal model, and utilizes the Cox proportional hazard model to describe the relationship between covariates and survival time information. Incorporated these two parts to build a multiple longitudinal data joint likelihood function of which EM algorithm is implemented to search for the maximum likelihood estimate.
關鍵字(中) ★ 聯合模型
★ 長期追蹤資料
★ Cox 比例風險模型
★ 期望值-最大化演算法
關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iii
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1 資料背景 1
1.1.1 疾病介紹 2
1.1.2 疾病傳染途徑 3
1.1.3 疾病診斷指標 5
1.1.4 疾病治療 6
1.2 研究背景與目的 8
第二章 統計方法 13
2.1 單一長期追蹤模型 14
2.2 Cox比例風險模型 15
2.3 聯合概似函數 16
2.4 EM演算法 18
2.5 參數標準誤之估計 22
2.6 K維線性共變數 23
第三章 實例分析 28
3.1 資料介紹 28
3.2 圖形法 29
3.2.1 長期追蹤測量值的輪廓圖 (profile graph) 29
3.2.2 事件歷史圖 35
3.2.3 3D平滑曲面圖及等高線圖 41
3.3 模型配適 49
3.3.1 比例風險檢定 49
3.3.2 聯合模型 51
第四章 結論與討論 60
附錄 62
參考文獻 66
參考文獻 施伊珊 (2007)。存活與長期追蹤資料之聯合模型-台灣愛滋病實例研究。國立中央大學統計研究所碩士論文。
孫怡婷 (2011)。聯合長期追蹤與存活資料分析─愛滋病病患之實例分析。國立中央大學統計研究所碩士論文。
陳瑞霙 (2008) 。聯合模型在雞尾酒療法療效評估之應用—利用CD4/CD8比值探討台灣愛滋病資料。國立中央大學統計研究所碩士論文。
張輔仁 (2008)。時間相依共變數之雙重存活時間分析—台灣愛滋病病患存活時間與 CD4 / CD8 比值關係之案例研究。國立中央大學統計研究所碩士論文。
Ciampi, A. and Etezadi-Amoli, J. (1985). A general model for testing the proportional hazards and the accelerated failure time hypothesis in the analysis of censored survival data with covariate. Communications in Statistics, 14, 651-667.
Cox, D. R. (1972). Regression Models and Life-Tables. Journal of the Royal Statistical Society, 34, 187-220.
Dubin, J. A., Müller, H. G. and Wang, J. L. (2001).Event history graphs for censored survival data. Statistics in Medicine, 20, 2951-2964.
Henderson, R., Diggle, P. and Dobson, A. (2000). Joint modeling of longitudinal measurements and event time data. Biostatistics, 4, 465-480.
Hsieh, F., Tseng, Y. K. and Wang, J. L. (2006). Joint Modeling of Survival and Longitudinal Data: Likelihood Approach Revisited. Biometrics, 62, 1037-1043.
Kaplan, E. L. and Meier, P. (1958). Nonparametric Estimation from Incomplete Observations. Journal of the American Statistical Association, 53, 457-481.
Kauermann G., Opsomer J. (2004). Generalized Cross-validation for Bandwidth Selection of Backfitting Estimates in Generalized Additive Models. Journal of Computational and Graphical Statistics, 13, 66-89.
Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38, 963-974.
Prentice, R. L. (1982). Covariate measurement errors and parameter estimation in a failure time regression model. Biometrika, 69, 331-342.
Tseng, Y. K., Hsieh , F. and Wang, J. L. (2005). Joint modeling of accelerated ailure time and longitudinal data. Biometrika, 92, 587-603.
Tsiatis, A. A. and Davidian, M. (2001). A semiparametric estimator for the proportional hazards model with longitudinal covariates measured with error. Biometrika, 88, 447-458.
Tsiatis, A. A. and Davidian, M. (2004). Joint Modeling of Longitudinal and Time-to-Event Data: An Overview. Statistica Sinica, 14, 809-834.
Verbeke, G. and Davidian, M. (2008). Joint Models for Longitudinal Data: Introduction and Overview. Longitudinal data analysis: handbooks of modern statistical methods Ed. Fitzmaurice, G., Davidian, M., Verbeke, G. and Molenberghs, G., 319-326. Chapman&Hall/CRC.
Wulfsohn, M. S. and Tsiatis, A. A. (1997). A Joint Model for Survival and Longitudinal Data Measured with Error. Biometrics, 53, 330-339.
Zeng D., Cai J. (2005). Asymptotic Results for Maximum Likelihood Estimators in Joint Analysis of Repeated Measurements and Survival Time. The Annals of Statistics, 33, 2132-2163.
指導教授 曾議寬 審核日期 2013-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明