博碩士論文 100226004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:18.232.55.175
姓名 朱騰漳(Teng-Jhang Jhu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以1 × 2垂直分岔高分子聚合物光路實現單晶片20-Gbps矽基光學連接模組
(Chip-Level 20-Gbps Optical Interconnect Modules with Polymer-Based 1 × 2 Vertically Optical Splitters Realized on Silicon Substrate)
相關論文
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 以矽光學平台為基礎之4通道×10-Gbps 光學連結模組之接收端研究
★ 透明導電層上之高分子聚合物微奈米光學結構於氮化鎵發光二極體光學特性研究★ 具45度反射面之非共平面轉折波導光路
★ 以矽光學平台為基礎之4通道 x 10 Gbps光學連結模組之發射端★ 具三維光路之光連接發射端模組
★ 矽基光學平台技術為核心之雙向4通道 x 10-Gbps光學連接收發模組★ 建立於矽基光學平台之高分子聚合物波導光路
★ 適用於色序式微型投影機之微透鏡陣列積分器光學系統研製★ 發光二極體色溫控制技術及其於色序式微型投影機之應用
★ 具45˚矽基反射面高分子聚合物波導之10-Gbps晶片內部光學連接收發模★ 在陶瓷基板實現高速穿孔架構之5-Gbps光學連接模組
★ 具垂直分岔光路之10-Gbps雙輸出矽基光學連接模組★ 利用光展量概念之微型投影機光學設計方法與實作
★ 利用三維矽波導光路實現10-Gbps單晶片光學連接模組★ 具垂直耦光45˚矽基反射面之高分子聚合物波導應用於20-Gbps單晶片光學連接模組
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文提出一個具有1  2分光能力的矽基光連接模組。此模組利用45微反射面達成光訊號垂直耦合,並透過高分子聚合物波導和擁有3個45微反射面的矽基板整合,實現垂直耦合、分岔光路雙輸出的矽基光學平台。利用覆晶封裝製程,在發射端和兩個輸出端封裝主動元件,完成具有收發端的光連接模組。此光連接模組具有垂直光學耦合能力、1  2雙輸出分光器、發射端和接收端,為一完整的晶片上光連接模組。
此光連接模組的光學耦合效率兩輸出通道分別是23.73%和23.53%,模組總損耗為-3.26dB。輸入訊號10GHz的高頻量測結果,雙輸出通道的眼高皆約有250mV,並且通過誤碼率測試,皆低於10-12等級,證明本研究架構具有雙輸出通道單晶片20-Gbps的資料傳輸能力。
摘要(英) In this thesis, A polymer waveguide monolithically integrated with three Si-based 45° reflectors realized on a Si substrate is proposed to form a 1 × 2 vertically optical splitter. A VCSEL chip at the input port and two PD chips at two output ports are flip-chip assembled.
In this thesis, we propose an intra-chip 10-Gbps optical interconnect module using a silicon optical bench (SiOB) integrated with polymer waveguides and silicon-based 45˚ micro-reflector.
This optical connection module optical coupling efficiency at two output channels of 23.73% and 23.53%, and the total optical insertion loss of 3.26 dB with a splitting ratio of 1:1 is obtained for the proposed splitter. The clear eye patterns with a transmission rate of 10 Gbps at two output ports are demonstrated and verify that the 1 × 2 vertical splitter is suitable for the optical interconnects with multiple output ports. The 10-Gbps error-free performance of receiver side is also achieved at the level of 10-12 even the VCSEL is biased at 5 mA.
關鍵字(中) ★ 波導
★ 高分子聚合物
★ 光聯接
關鍵字(英) ★ polymwer
★ waveguide
★ optical interconnect
★ on-chip
論文目次 摘要 i
目錄 iii
圖目錄 iv
表目錄 ix
第一章 緒論 1
1-1 研究動機與目的 1
第二章 垂直耦合分岔雙輸出光學連接模組設計 11
2-1 垂直耦合分岔光學連接模組結構尺寸以及光學設計 12
2-2 高頻傳輸線設計模擬與分析 18
第三章 垂直耦合分岔雙輸出光學連接模組設計製作開發 24
3-1 具45°微反射面矽基光學平台製程與開發 24
3-1.1 矽基光學平台製程開發 25
3-1.2 45°微反射面金屬製程開發 27
3-2 具分光結構之高分子聚合物波導製作 29
3-3.1 高頻傳輸線金屬製作 34
3-3.2 焊料銦金屬製作 36
3-3.3 元件覆晶封裝製程 37
第四章 垂直耦合分岔雙輸出光學連接模組之量測與分析 40
4-1 具分光結構高分子聚合物波導之光學與元件特性量測 40
4-1.1面射型雷射與光檢測器特性量測 40
4-1.2高分子聚合物波導光學特性量測 44
4-2 垂直分岔雙輸出光連接模組高頻特性量測 46
4-2.1 高頻傳輸線特性量測 46
4-2.2 雙輸出光學連接模組頻率響應量測 50
4-2.3 雙輸出光學連接模組眼圖量測 53
第五章 結論與未來展望 63
參考文獻 65
參考文獻 [1] D. A. B. Miller, "Device requirement for optical interconnects to silicon chips," Proc. IEEE Special issue on silicon photonics, 2009
[2] S. Hiramatsu and T. Mikawa, “Optical design of active interposer for high-speed chip level optical interconnects,” IEEE J. Sel. Top. Quantum Electron., 24(2), 927-934 (2006).
[3] M. Aljada, K. E. Alameh, Y. T. Lee, and I. S. Chung, “High-speed (2.5 Gbps) reconfigurable inter-chip optical interconnects using opto-VLSI processors,” Opt. Express, 14(15), 6823-6836 (2006).
[4] X. Wang and R. T. Chen, “Fully embedded board level optical interconnects — From point-to-point interconnection to optical bus architecture,” Proc. SPIE, 6899, 6899031-6899039 (2008).
[5] A. F. J. Levi, “Optical interconnects in systems,” Proc. IEEE, vol. 88,no. 6, pp. 750–757, Jun. 2000.
[6] A. F. Benner et al., “Exploitation of optical interconnects in futureserver architectures,” IBM J. Res. Develop., vol. 49, no. 5, pp. 759–782,2005.
[7] A. F. Benner, P. K. Pepeljugoski, and R. J. Recio, “A roadmap to 100G Ethernet at the enterprise data center,” IEEE Trans. Commun. Mag., 45(11), pp. 10–17, Nov. 2007.
[8] P. Kapur, J. P. Mc Vittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects. I. Resistance modeling,” IEEE Trans. Electron Devices, 49(4), pp. 590-597, Apr. 2002.
[9] P. Kapur, G. Chandra, J. P. Mc Vittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects. II. Performance implications,” IEEE Trans. Electron Devices, 49(4), pp. 598-604, Apr. 2002.
[10]A. Shacham, K. Bergman, and L. P. Carloni, BOn the design of a photonic network-on-chip, presented at the Int. Symp. etworks-on-Chips, Princeton, NJ,May 2007, paper 2.1.
[11] Aleksandr Biberman, Keren Bergman, “Optical interconnection networks forhigh-performance computing systems,” Rep. Prog. Phys. January, 2012, 046402 (15pp)
[12] Wei-Chao Chiu, Cheng-Yen Lu, and Ming-Chang M. Lee, “Monolithic Integration of 2-D Multimode Interference Couplers and Silicon Photonic Wires,” IEEE J SEL TOP QUANT, 17(3), pp. 540–545,MAY/JUNE 2011
[13] Hidetoshi Numata, Shigeru Nakagawa, Yoichi Taira, Shimotsuruma, Yamato, “Three-Dimensional Low-loss Waveguide Shuffler and Splitter Combiner using Novel Mirror Structure,” ECOC, September, 2009
[14]Woo-Jin Lee, Sung Hwan Hwang, Myoung Jin Kim, Eun Joo Jung, Jong Bea An,Gye Won Kim, Myung Yung Jeong, and Byung Sup Rho,” Multilayered 3-D Optical Circuit With Mirror-Embedded Waveguide Films,” IEEE Photon Tech Lett, 24(14), pp. 1179-1181, JULY 15, 2012
[15]Y. Urino et.al.“First demonstration of high density optical interconnects integrated with lasers, optical modulators, and photodetectors on single silicon substrate,” Opt. Express, vol. 19, pp. B159 – B165, Nov. 2011.
[16] David M. Pozer “Microwave Engineering” John Wiley & Sons, Inc. 2005
[17] 許志宏,”具繞射式光學元件之矽基45微反射面研究,” (中央大學光電所碩士論文, 台灣, 2007)
[18] B. E. Lemoff, M. E. Ali, G. Panotopoulos, G. M. Flower, B. Mahdavan, A. F. J.Levi, and D. W. Dolfi, “MAUI: Enabling fiber-to-processor with parallel multiwavelength optical interconnects,” IEEE J. Lightwave Technol., 22, 2043-2054 (2004).
[19] F. Wang, F. Liu, and A. Adibi, “45 degree polymer micromirror integration for board-level three-dimensional optical interconnects,” Opt. Express, 17, 10514-10521 (2009).
[20] Kun-Mo Chu, Jung-Sub Lee, Han Seo Cho*, Hyo-Hoon Park*, and Duk Young Jeon, “A Fluxless Flip Chip Bonding for VCSEL Arrays Using Silver Coated Indium Solder Bumps,” IEEE Conference,2004
指導教授 伍茂仁(Mount-Learn Wu) 審核日期 2013-8-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明