博碩士論文 100226015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:54.92.148.165
姓名 黃聖傑( Sheng-Chieh Huang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以磁控電漿輔助化學氣相沉積法製鍍有機矽阻障層之研究
(Investigation the organo-silicon barrier film deposited by magnetron PECVD)
相關論文
★ Continuous-wave narrow-line yellow laser generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究
★ 軟性電子阻水氣膜之有機層組成研究★ 半導體雷射泵浦內建式Q-調制Nd:MgO:PPLN雷射之研究
★ 主動式多通道窄頻寬通Ti:PPLN波導濾波及模態轉換器之研究★ 以鎂掺雜鈮酸鋰製作二倍頻藍光雷射波導元件之製程研究
★ 非週期性晶格極化反轉鈮酸鋰作為主動式窄頻寬通多波長濾波器及倍頻多波長濾波器★ 非週期性晶格極化反轉鈮酸鋰作為有效率的二倍頻和模態轉換器之研究
★ 積體式週期與非週期極性反轉鈮酸鋰光電與雷射元件★ 退火式質子交換波導PPLN電光調制TM模態轉輻射偏振態之研究
★ 高效率雙Nd:YVO4 雷射和頻黃光產生系統★ 以串級式電光週期性晶格極化反轉鈮酸鋰達成三波長主動式Q-調制Nd:YVO4雷射
★ 以單塊二維週期性晶格極化反轉鈮酸鋰同時作為Nd:YVO4雷射之電光Q調制器和腔內光參量振盪器★ 綠光準相位匹配二倍頻質子交換鎂摻雜鈮酸鋰波導的製程研究
★ 以單晶片串級式週期性準相位匹配波長轉換器與非週期性準相位匹配電光偏振模態轉換器達成主動式調制窄頻輸出光參量振盪器之研究★ 單片非週期性晶疇極化反轉鈮酸鋰同時作為Nd:YVO4雷射Q-調制和腔內光參量產生之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著科技的快速發展,消費型電子產品逐漸成為人們生活不可或缺的一部分,然而建立在矽基板、玻璃纖維及玻璃基板的電子產品已難以實現輕、薄、低成本的開發目標,於是使用輕薄、可撓曲、低成本塑膠基板的軟性電子技術遂成為製造商眼中理想的開發標的。儘管塑膠基板具有質輕、耐撞擊及快速量產等優點,但其對水氣滲透的隔絕性不佳使得水氣阻障薄膜成為近來熱門的研究方向。其中氧化矽薄膜由於具有良好的透光性及機械性質而成為良好的水氣阻障材料,但一般如電容耦合式電漿輔助化學氣相沉積(PECVD)方式製鍍氧化矽薄膜多操作於10-1 Torr之低真空環境,使其難以搭配磁控濺鍍於高真空環境(10-3 Torr)下進行連續作業。磁控電漿輔助化學氣相沉積法(magnetron PECVD)以磁控濺鍍槍作為電漿源而使PECVD能操作於高真空環境(10-3 Torr),薄膜沉積時原子較不易與其他原子碰撞而能在氣相中維持高動能,並於薄膜沉積時移動至鍵結位能低點而得到較緻密之膜材。但以此方法鍍製時有機矽存留在電漿時間較短,使膜材內含大量碳氫不純物降低薄膜阻水氣效力。本實驗以磁控電漿輔助化學氣相沉積法於高真空環境下製鍍氧化矽薄膜阻障層,在電漿功率100W、10sccm氧氣及0.25g/h HMDSO,製鍍50nm厚之薄膜阻障層,其水氣穿透率在微量含碳下仍可達 0.139g/m2/day,相信能符合軟性光電元件對阻水氣性及可撓性上的需求。
摘要(英) With the rapid development of technology, consumer electronics products gradually become an indispensable part of people's lives. However, electronics based on the silicon substrate, glass fiber and glass substrates has been difficult to achieve light, thin and low-cost development goals, so the use of thin, flexible, low-cost flexible plastic substrate becomes an ideal develop targets for manufactures. Although the plastic substrate has the advantages such as light-weight, impact-resistant and rapid mass production, but its poor water vapor permeation barrier ability limit its application, therefore promote water vapor barrier film becomes a popular research topics. Silicon oxide film has good transparency and mechanical properties makes it a popular water vapor barrier material, but generally PECVD silicon oxide film coating process such as capacitive coupled PECVD operates at low vacuum environment (10-1 Torr), makes it difficult to match magnetron sputtering process under high vacuum enviroment (10-3 Torr) for continuous operation. Magnetron PECVD using magnetron sputtering gun as PECVD plasma source which makes PECVD process can operate in high vacuum environment (10-3 Torr), however silicon oxide coating by this method may leads to a large number of hydrocarbon content in layer, since the short residence time of monomer in plasma result to a lower degree of monomer fragmentation, thus reduce the effectiveness of the permeation barrier ability of silicon oxide film.
In this research, silicon oxide water vapor barrier film on PET substrate deposited by magnetron PECVD in high vacuum environment (10-3 Torr). Although the side effect such as hydrocarbon content and high process temperature by magnetron sputter gun may deteriorate the barrier performance of the silicon oxide film, the improvement of vacuum degree may able to improve the compactness thus lower the WVTR value. Excess oxygen flow can further increase the Si(-O)4 content, but the etching effect by oxygen plasma on PET substrate may destroy the surface flatness then increase possibility of nano-crack by release of internal stress.
100W RF power, 10sccm O2, 0.25g/h HMDSO were applied to deposit a 50-nm-thick film with low WVTR and high transmittance above 90%. WVTR of the film reached the value of 0.139 g/m2/day lower than the best WVTR value, 0.3 g/m2/day, of films deposited by HMDSO using PEVCD process with other plasma source.
關鍵字(中) ★ 薄膜阻障層
★ 水氣穿透率
關鍵字(英) ★ barrier film
★ HMDSO
★ WVTR
論文目次 摘要 I
Abstract II
圖目錄 V
表目錄 VII
第一章 緒論 1
1-1 前言 1
1-2 研究內容 6
第二章 基礎理論與文獻回顧 7
2-1 電漿輔助化學氣相沉積(PECVD) 7
2-1-1 電漿原理 7
2-1-2 電漿聚合法(Plasma polymerization) 9
2-1-3 HMDSO化學反應 14
2-2 氣體阻障層 16
2-2-1氣體滲透機制 16
2-2-2薄膜阻障層鍍製方法 22
第三章 實驗方法與儀器原理 28
3-1 實驗目標 28
3-2 實驗裝置 28
3-3 量測儀器原理 31
3-3-1 紫外/可見/紅外光 分光譜儀 (UV/VIS/NIR Spectrophotometer) 31
3-3-2 傅式轉換紅外線光譜儀(Fourier-Transform Infrared,FTIR) 32
3-3-3 X射線光電子能譜儀 (X-ray Photoelectron Spectroscopy,XPS) 33
3-3-4 原子力顯微鏡 (Atomic Force Microscopy) 34
3-3-5 Mocon水氣透過率量測儀 35
第四章 結果與討論 37
4-1 討論氬氣流量對薄膜水氣穿透率(WVTR)的影響 37
4-2 討論HMDSO流量對薄膜水氣穿透率(WVTR)的影響 39
4-3 討論氧氣流量對薄膜水氣穿透率(WVTR)的影響 43
4-4 討論膜材厚度對薄膜水氣穿透率(WVTR)的影響 48
第五章 結論 50
參考文獻 51
參考文獻 1. A. Nathan and B. R. Chalamala, “Special Issue on Flexible Electronics Technology, Part 1: Systems and Applications”, Proceedings of the IEEE, Vol 93, Issue 7, pp. 1235-1238, 2005.
2. G. Gu, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson,
“Vacuum-deposited, nonpolymeric flexible organic light-emitting devices,” Opt. Lett., Vol 22, pp. 172–174, 1997.
3. G. Gustaffson, G. M. Treacy, Y. Cao, F. Klavetter, N. Colaneri, and A.
J. Heeger, “The ‘plastic’ LED: A flexible light-emitting device using a polyaniline transparent electrode,” Synthetic Metals, Vol 57, Issue 1, pp. 4123–4127, 1993.
4. Schaer M, Nu‥esch F, Berner D, Leo W, Zuppiroli L. “Water vapor and oxygen degradation mechanisms in organic light emitting diodes”, Advanced Functional Materials, Volume 11, Issue 2, pp. 116–121, 2001.
5. P. E. Burrows, G. L. Graff, M. E. Gross, P. M. Martin, M. Hall, E.Mast, C. Bonham, W. Bennett, L. Michalski, M. Weaver, J. J. Brown,D. Fogarty, and L. S. Sapochak, “Gas permeation and lifetime tests on polymer-based barrier coatings,” Proc. SPIE, Vol. 4105, pp. 75–83, 2001.
6. Burrows PE, Graff GL, Gross ME, Martin PM, Shi MK,Hall M, et al., “Ultra barrier ?exible substrates for ?at panel displays”, Displays, Vol 22, Issue 2, pp. 65-69, 2001.
7. Lewis JS, Weaver MS, “Thin-?lm permeation-barrier technology for ?exible organic light-emitting devices”, Selected Topics in Quantum Electronics, IEEE Journal of , Vol 10, Issue 1, pp. 45-57, 2004.
8. T.N. Chen, D.S. Wuu, C.C. Wu, C.C. Chiang, Y.P. Chen, R.H. Horng, “High-Performance Transparent Barrier Films of SiOx?∕?SiNx Stacks on Flexible Polymer Substrates”, J. Electrochem. Soc., Vol 153, Issue 10, pp. 244-248, 2006.
9. Jin-Seong Park, Heeyeop Chae, Ho Kyoon Chung and Sang In Lee, “Thin ?lm encapsulation for ?exible AM-OLED: a review”, Semicond. Sci. Technol., Vol. 26, pp., 2011.
10. W. Huang, X Wang, M. Sheng, L. Xu, F. Stybhan, L. Luo, T. Feng, X. Wang, F. Zhang, and S. Zou, “Low temperature PECVD SiNx films applied in OLED packaging”, Mat. Sci. Eng. B, Vol 98, Issue 3, pp. 248-254, 2003.
11. A. M. Coclite, A Milella, R. d'Agostino, F. Palumbo, “On the relationship between the structure and the barrier performance of plasma deposited silicon dioxide-like films”, Surface & Coatings Technology, Vol 204, pp. 4012–4017, 2010.
12. B Chapman, Glow Discharge Processes Sputtering and Plasma etching, John wiley & sons, New York, pp. 52, 1980.
13. M. Creatore, F. Palumbo, R. d’Agostino, and P. Fayet, “RF plasma deposition of SiO2-like films: plasma phase diagnostics and gas barrier film properties optimization”, Surf. Coat. Technol, Vol 163, pp. 142–144, 2001.
14. M. Creatore, F. Palumbo, R. d’Agostino, “De1position of SiOx Films from Hexamethyldisiloxane/Oxygen Radiofrequency Glow Discharges: Process Optimization by Plasma Diagnostics”, Plasmas Polym., Vol 7, pp. 291, 2002.
15. A. Barranco, J. Cotrino, F. Yubero, T. Girardeau, S. Camelio, A.R. Gonzalez-Elipe , “A structural study of organo-silicon polymeric thin films deposited by remote microwave plasma enhanced chemical vapour deposition”, Surf. Coat. Technol., Vol 180-181, pp. 244-249, 2004.
16. Korzec D, Theirich D, Werner F, Traub K and Engemann J, “Remote and direct microwave plasma deposition of HMDSO ?lms: comparative study”, Surf. Coat. Technol., Vol 74–75, pp. 67–74, 1995.
17. E. Schmachtenberg, F. Costa, S. Gobel, “Microwave assisted HMDSO/oxygen plasma coated polyethylene terephthalate films: Effects of process parameters and uniaxial strain on gas barrier properties, surface morphology, and chemical composition”, Journal of Applied Polymer Science
, Vol 99, Issue 4, pp.1485-1495, 2004.
18. da Silva Sobrinho, A. S., Latr`eche, M., Czeremuszkin, G., Klemberg-Sapieha, J. E., and Wertheimer, M. R.., “Transparent barrier coatings on polyethylene terephthalate by single- and dual-frequency plasma-enhanced chemical vapor deposition”, Journal of Vacuum Science and Technology A , Vol 16, pp. 3190–3198, 1998.
19. A. Gruniger, A. Bieder, A. Sonnenfeld, Ph. R. Von Rohr, U. Muller, and R. Hauert, “Influence of film structure and composition on diffusion barrier performance of SiOx thin films deposited by PECVD”, Surf. Coat. Technol., Vol 200, pp. 4564-4571, 2006.
20. 國科會精密儀器發展中心, 真空技術與應用, 國科會精密儀器發展中心, pp. 87-88, 台北, 2001.
21. Yasuda, H., Plasma Polymerization, Academic Press Inc, 1985.
22. S Gunther, M Fahland, J Fahlteich, B Meyer, S Straach, N Schiller, “High rate low pressure plasma-enhanced chemical vapor deposition for barrier and optical coatings”, Thin Solid Films,Vol 532, pp 44–49, 2013.
23. C. Charton, M. Fahland, N. Schiller, Proc. of 48th Annual Technical Conference of Society of Vacuum Coaters (SVC), pp. 856, 2005.
24. Fahlteich, J., Sch‥onberger, W., Meyer, B., Fahland, M., Schiller, N., “Mechanical and Barrier Properties of Thin Oxide Films on Flexible Polymer Substrates”, Proceedings of the 51st Annual Technical Conference of the Society of Vacuum Coaters, pp 808–813, 2008.
25. M. Fahland, T. Vogt, B. Meyer, J. Fahlteich, N. Schiller, “Deposition of functional coatings on polyethylene terephthalate ?lms by magnetron-plasma-enhanced chemical vapour deposition”, Thin Solid Films, Vol 517, pp. 3043, 2009.
26. F. Garbassi, M. Morra, and E. Occhiello, Polymer Surface From Physics to Technology, Polymer International, Vol. 49, P. 135, 2000.
27. M. R. Wertheimer, L. Martinu and E. M. Liston, “Plasma surface modification of polymers for improved adhesion: a critical review”, J. Adhes. Sci. Technol, Vol. 7, pp. 1091-1127, 1993
28. N. Inagaki, Plasma surface modification and plasma polymerization, Technomic Publish Company, Inc., pp. 21-41, 1996.
29. AM Wrobel, MR Wertheimer, R d'Agostino, Plasma Deposition, Treatment, and Etching of Polymers, pp 163–268, 1990.
30. L Zaji?kova, V Bur?ikova, Z Ku?erova, D Franta, P Dvo?ak, R ?mid, V Pe?ina, A Mackova, “Deposition of protective coatings in rf organosilicon discharges”, Plasma Sources Science and Technology, Vol 16 , S 123, 2007.
31. Yoou-Bin Guo, Franklin Chau-Nan Hong, “Adhesion improvements for diamond-like carbon films on polycarbonate and polymethylmethacrylate substrates by ion plating with inductively coupled plasma”, Diamond and Related Materials, Vol 12, Issues 3–7, pp. 946-952, 2003.
32. E. Angelini, R. d'Agostino, F. Fracassi, S. Grassini, F. Rosalbino, “Surface analysis of PECVD organosilicon films for corrosion protection of steel substrates”, Surface and Interface Analysis, Vol 34, Issue 1, pp. 155-159, 2002.
33. S. Sahli, Y. Segui, S. Ramdani and Z. Takkouk, “R.f. plasma deposition from hexamethyldisiloxane-oxygen mixtures”, Thin Solid Films, Vol 250, Issue 1-2, pp. 206-212, 1994.
34. M. Creatore, F. Palumbo and R. d’Agostino, “Deposition of SiOx Films from Hexamethyldisiloxane/Oxygen Radiofrequency Glow Discharges: Process Optimization by Plasma Diagnostics”, Plasmas Polymers, Vol 7, Issue 3, pp. 291–310, 2002.
35. R. d’Agostino, P. Favia, C. Oehr, M. R. Wertheimer, Plasma Processes and Polymers, pp. 97, 2005.
36. F. C. Krebs, Stability and Degradation of Organic and Polymer Solar Cells, John Wiley & Sons, 2012.
37. Dameron, A. A., Reese, M. O., Moriconie, T. J., Kempe, M. D., “Understanding moisture ingress and packaging requirements for photovoltaic modules”, Photovoltaics International, Vol 13, pp. 121–130, 2009.
38. Warnecke, R., Industrielle Feuchtemessung, Wiley-VCH Weinheim, 2003.
39. Roberts, A.P., Henry, B.M., Sutton, A.P., Grovenor, C.R.M., Briggs, G.A.D., Miyamoto, T., Kano, M., Tsukahara, Y., Yanaka, M., “Gas permeation in silicon-oxide/polymer (SiOx/PET) barrier ?lms: role of the oxide lattice, nanodefects and macrodefects”, Journal of Membrane Science, Vol 208, pp. 75–88, 2002
40. Af?nito, J., and Hilliard, D., “A New Class of Ultra-Barrier Materials”, In:Proceedings of the 47th Annual Technical Conference of the Society of Vacuum Coaters, pp. 563–593, 2004.
41. Y.G. Tropsha and N.G. Harvey, “Activated rate theory treatment of oxygen and water transport through silicon oxide/poly (ethylene terephthalate) composite barrier structures”, J. Phys. Chem. B, Vol 101, pp.2259-2266, 1997.
42. Wutz, M., Adam, H., and Walcher, W., Theorie und Praxis der Vakuumtechnik, vieweg Verlag, Braunschweig, Germany, 1992.
43. Henry, B. M., Erlat, A. G., Grovenor, C. R. M, Briggs, G. A. D., Miyamoto, T., and Tsukahara, Y., “Permeation Studies of Transparent Barrier Coatings”, In: Proceedings of the 46th Annual Technical Conference of the Society of Vacuum Coaters, pp. 600–605, 2003.
44. Fahlteich, J., Fahland, M., Sch‥onberger, W., Schiller, N., “Permeation barrier properties of thin oxide ?lms on ?exible polymer substrates”, Thin Solid Films, Vol 517, pp. 3075–3080, 2009.
45. Henry, B.M., Assender, H. E., Erlat, A. G., Grovenor, C. R. M., Briggs, G. A. D.,Miyamoto, T., Tsukahara, Y., “Gas Barrier Properties of Transparent Metal Oxide Coatings on PET Film”, Proceedings of the 47th Annual Technical Conference of the Society of Vacuum Coaters, pp. 609–613, 2004.
46. da Silva Sobrinho, A. S., Latr`eche, M., Czeremuszkin, G., Klemberg-Sapieha, J. E., and Wertheimer, M. R.., “Transparent barrier coatings on polyethylene terephthalate by single- and dual-frequency plasma-enhanced chemical vapor deposition”, Journal of Vacuum Science and Technology A, Vol 16, pp. 3190–3198, 1998.
47. Brett, M. J., Tait, R. N., Dew, S. K., Kamasz, S., Labun, A. H., and Smy, T., “Nodular Defect Growth in thin ?lms”, Journal of Materials Science: Materials in Electronics, Vol 3, pp. 64–70, 1992.
48. John Fahlteich, Transparente Hochbarriereschichten auf ?exiblen Substraten, Technical University of Chemnitz, 2010.
49. Comyn, J., “Introduction to polymer permeability and the mathematics of diffusion”, Polymer Permeability, pp. 1-10, 1986.
50. Utz, H., Barriereeigenschaften aluminiumbedampfter Kunststofffolien, Technical University Munich, 1996.
51. D. S. Wuu, T. N. Chen, C. C. Wu, C. C. Chiang, Y. P. Chen, R. H. Hirng, and F. S. Juang, “Transparent barrier coatings for flexible organic light-emitting diode applications”, Chemical Vapor Deposition, Vol 12, pp. 220-224, 2006.
52. Steven M. George, “Atomic Layer Deposition: An Overview”, Chem. Rev., Vol 110, pp. 111-131, 2010.
53. Hood Chatham, “Oxygen diffusion barrier properties of transparent oxide coatings on polymeric substrates”, Surface and Coatings Technology, Vol 78, Issue 1-3, pp. 1-9, 1996.
54. S. M. George, A. W. Ott, J. W. Klaus, “Surface Chemistry for Atomic Layer Growth”, J. Phys. Chem., Vol 100, pp. 13121-13131, 1996.
55. Ott, A. W., Klaus, J. W., Johnson, J. M., George, S.,” Al3O3 thin film growth on Si(100) using binary reaction sequence chemistry”, Thin Solid Films, Vol 292, Issue 1-2, pp. 135-144, 1997.
56. Dillon, A. C., Ott, A. W., Way, J. D., George, S. M., “Surface chemistry of Al2O3 deposition using Al(CH3)3 and H2O in a binary reaction sequence”, Surface Science, Vol 322, Issue 1-3, pp. 230-242,1995.
57. P. F. Carcia, R. S. McLean, M. H. Reilly, M. D. Groner, S. M. George, “Ca test of Al2O3 gas diffusion barriers grown by atomic layer deposition on polymers”, Applied Physics Letters, Vol 89, Issue 3, 031915, 2006.
58. Carcia, P. F., McLean, R. S., Groner, M. D., Dameron, A. A., George, S. M., “Gas diffusion ultrabarriers on polymer substrates using Al2O3 atomic layer deposition and SiN plasma-enhanced chemical vapor deposition”, J. Appl. Phys., Vol 106, Issue 2, 023533, 2009.
59. Dameron, A. A., Davidson, S. D., Burton, B. B., Carcia, P. F., McLean, R. S., George, S. M., J. Phys. Chem. C, Vol 112, pp. 4573-4580, 2008.
60. John Fahlteich, Waldemar Schonberger, Matthias Fahland, Nicolas Schiller, “Characterization of reactively sputtered permeation barrier materials on polymer substrates”, Surface & Coatings Technology, Vol 205, pp. 141-144, 2011.
61. Berg, S., Nyberg, T., “Fundamental understanding and modeling of reactive sputtering processes”, Thin Solid Films, Vol 476, pp. 215–230, 2005.
62. D. Hegemann, H. Brunner, C. Oehr, “Deposition rate and three-dimensional uniformity of RF plasma deposited SiOx ?lms”, Surf Coat Technol., Vol. 142-144, pp. 849-855, 2001.
63. D. Hegemann, H. Brunner, C. Oehr, “Evaluation of deposition conditions to design plasma coatings like SiOx and a-C:H on polymers”, Surf Coat Technol., Vol. 174-175, pp. 253-260, 2003.
64. D. Hegemann, M.M. Hossain, In?uence of Non-Polymerizable Gases Added During Plasma Polymerization, Plasma Proc. Polym, Vol. 2, Issue 7, pp. 554-562, 2005.
65. CY Wu, RM Liao, LW Lai, MS Jeng, DS Liu, “Organosilicon/silicon oxide gas barrier structure encapsulated ?exible plastic substrate by using plasma-enhanced chemical vapor deposition”, Surface and Coatings Technology, Vol. 206, Issue 22, pp. 4685-4691, 2012.
66. Peter Antony Premkumar, Sergey A. Starostin, Mariadriana Creatore, Hindrik de Vries, Roger M. J. Paffen, Paul M. Koenraad, Mauritius C. M. van de Sanden, “Smooth and Self-Similar SiO 2 -like Films on Polymers Synthesized in Roll-to-Roll Atmospheric Pressure-PECVD for Gas Diffusion Barrier Applications”, Plasma Processes and Polymers, Vol.7 , pp. 635-639, 2010.
67. D. S. Wuu, W. C. Lo, C. C. Chiang, H. B. Lin, L. S. Chang, “Transparent barrier coatings on flexible polyethersulfone substrates for moisture-resistant applications”, Mater. Sci. Forum., vol. 475-479, pp.4017-4020, 2005.
68. A. S. da Silva Sobrinho, G. Czeremuszkin, M. Latreche, and M. R. Wertheimer, “Defect-permeation correlation for ultrathin transparent barrier coatings on polymers”, J. Vac. Sci. Technol., Vol 18, pp.149-157, 2000.
69. K. Teshima, H. Sugimura, Y. Inoue, O. Takai, A. Takano, “Gas barrier performance of surface-modified silica films with grafted organosilane molecules”, Langmuir, 19, pp.10624-10627, 2003.
70. D. Hegemann, H. Brunner, C. Oehr, “Evaluation of deposition conditions to design plasma coatings like SiOx and a-C:H on polymers”, Surface and Coatings Technol., Vol. 174–175, pp. 253–260, 2003.
71. S. R. Kim, M. H. Choudhury, W. H. Kim, G. H. Kim, “Effects of argon and oxygen flow rate on water vapor barrier properties of silicon oxide coatings deposited on polyethylene terephthalate by plasma enhanced chemical vapor deposition”, Thin Solid Films, Volume 518, pp.1929–1934, 2010.
72. Y. C. Lin, Q. K. Le, L.W. Lai , R.M. Liao , M.S. Jeng, D.S. Liu, “Optimizing The Organic/Inorganic Barrier Structure For Flexible Plastic Substrate Encapsulation”, International Journal of Engineering and Technology Innovation, vol. 2, pp.184-194, 2012.
73. Peter Antony Premkumar, Sergey A. Starostin, Mariadriana Creatore,
Hindrik de Vries, Roger M. J. Paffen, Paul M. Koenraad, Mauritius C. M.van de Sanden, “Smooth and Self-Similar SiO 2 -like Films on Polymers Synthesized in Roll-to-Roll Atmospheric Pressure-PECVD for Gas Diffusion Barrier Applications”, Plasma Processes and Polymers, Vol. 7, pp. 635-639, 2010.
74. J. C. Manifacier, J. Gasiot, J. P. Fillard, “A simple method for the determination of the optical constant n, k and the thickness of the weakly absorbing thin film”, J. Phy. E, Sci. Inst., Vol. 9, pp. 1002-1004, 1976.
75. 國科會精密儀器發展中心,真空技術與應用,國科會精密儀器發展中心,第572-574頁,台北,民國九十年。
76. W.S. Liao, C.H. Lin, and S.C. Lee, “Oxidation of silicon nitride prepared by plasma-enhanced chemical vapor deposition at low temperature”, Applied Physics Letters, Vol. 65, pp. 2229, 1994.
77. W. T. Li, D. R. Mckenzie, W. D. Macfall, and Q. C. Zhang, “Effect of sputtering-gas pressure on properties of silicon nitride films produced by helicon plasma sputtering”, Thin Solid Films, Vol. 384, pp.46, 2001.
78. M.R. Alexander, R.D. Short, F.R. Jones, W. Michaeli, C.J. Blomfield, ” A study of HMDSO / O2 plasma deposits using a high-sensitivity and -energy resolution XPS instrument: curve fitting of the Si 2p core level”, Applied Surface Science, Vol. 137, pp. 179-183, 1999.
79. Yun-Shiuan Li, Chih-Hung Tsai, Shao-Hsuan Kao, I-Wen Wu, Jian-Zhang Chen, Chih-I Wu, Ching-Fuh Lin and I-Chun Cheng, “Single-layer organic–inorganic-hybrid thin-film encapsulation for organic solar cells”, JOURNAL OF PHYSICS D: APPLIED PHYSICS, Vol. 46, 2013.
80. A. S. da Silva Sobrinho, N. Schuhler, J. E. Klemberg-Sapieha, and M. R. Wertheimer,“Plasma-deposited silicon oxide and silicon nitride films on poly(ethylene terephthalate): A multitechnique study of the interphase regions”, J. Vac. Sci. Technol. A, Vol. 16, pp. 2021, 1998.
指導教授 陳彥宏、郭倩丞
(Yen -Hung Chen、Chien-Cheng Kuo)
審核日期 2014-1-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明