博碩士論文 100226017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:35.171.183.163
姓名 呂喬聖(Chiao-Sheng Lu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 非反掃描式平行接收之雙光子螢光超光譜顯微術
(Non-de-scanned two-photon fluorescence hyperspectral microscopy with parallel recording)
相關論文
★ 以二次通過成像量測架構及降低誤差迭代演算法重建人眼之點擴散函數★ LASER光源暨LED在老鼠毛生長的低能量光治療比較分析
★ 應用線狀結構照明提升雙光子顯微鏡解析度★ 以同調結構照明顯微術進行散射樣本解析度之提升
★ 掃描式二倍頻結構照明顯微術★ 小貓自泵相位共軛鏡於數位光學相位共軛與時間微分之研究
★ 鏡像輔助斷層掃描相位顯微鏡★ 以數位全像術重建多波長環狀光束之研究
★ 相位共軛反射鏡用於散射介質中光學聚焦之研究★ 雙光子螢光超光譜顯微術於多螢光生物樣本之研究
★ 倍頻非螢光基態耗損超解析之顯微成像方法★ 葉綠素雙光子螢光超光譜影像於光合作用研究之應用
★ 雙光子掃描結構照明顯微術★ 微投影光學切片超光譜顯微術
★ 使用結構照明顯微術觀察活體小鼠毛囊生長週期之變化★ 一次性多角度漫射光譜量測系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 分子影像在生醫工程中是一項重要的技術。其方法可以分類為兩種:一種為以非光學為基礎的技術,另外一種則是以光學為基礎的技術,然而,後者可以擁有低侵入性和高影像解析度。
在生物體中,分子的螢光放射光譜扮演著重要的角色,可以提供有用的生物資訊。然而,由於螢光放射光譜較寬,不同分子的光譜容易重疊而造成嚴重的光譜交錯現象,導致在分子影像上產生誤判。為了解決此問題,原本應用於太遙的超光譜技術被應用在生醫影像上,此技術同時記錄了分子的空間與光譜資訊,配合光譜的分析將能解決光譜交錯的問題而提昇分子影像的準確性。
我們研發了一套雷射單點掃描雙光子螢光超光譜顯微術,結合雙光子顯微術的良好光學切片能力,和較深的穿透深度,此系統架構適合用在厚樣本上以及活體內的研究。本系統採用了非反掃描以及平行接收的架構,非反掃描架構可以增加訊號的收集效率,而利用二維CCD進行空間及光譜訊號的平行接收,可以提升取樣速度以及光譜解析度。在本論文中將會詳細描述超光譜顯微術系統的構造,同時,利用混合式螢光微粒球與黃金葛葉子,來驗證此系統的取像速度及解析能力。
摘要(英) Molecular imaging is a popular technique in biomedical engineering. It can be classified into two methods, one is non-optics–based and the other one is optics-based. However, the latter can provide non-invasive investigation and better spatial resolution.
Fluorescence emission spectrum provides valuable information of molecules and plays an important role in molecular imaging. However, the emission spectrum overlap of different molecules usually causes serious crosstalk which would lead to errors in molecular imaging. To solve this problem, hyperspectral imaging techniques are developed and used to record both the spatial and spectral information of the molecules simultaneously.
We developed a two-photon hyperspectral microscopy (TPHM) based on the laser-scanning point excitation, non-de-scanned, and parallel recording geometry. Integrated with the optical sectioning power and higher penetration depth of the two-photon microscopy, this system is suitable for thick tissue or in vivo imaging. The non-de-scanned geometry helps to increase the collection efficiency, while the parallel recording of the spatial-spectralinformation with a 2D CCD can improve the frame rate and spectral resolution.
In this thesis, the architecture and the experimental results of this hyperspectral microscopic system will be described in details. The characteristics of this system was demonstrated by using mixed fluorescence microspheres and fresh Epipremnum aureum leaves as samples.
關鍵字(中) ★ 超光譜影像
★ 雙光子螢光顯微術
★ 非反掃描
★ 光譜分析
關鍵字(英)
論文目次 目錄
Abstract i
中文摘要 ii
目錄 iii
圖目錄 v
第一章 緒論 1
1.1 分子影像簡介 1
1.2 螢光顯微術 3
1.3 螢光超光譜影像 4
1.3.1 廣域照明超光譜顯微術 5
1.3.2 線狀激發超光譜顯微術 6
1.3.3 點狀激發超光譜顯微術 8
1.4 研究動機與目的 11
1.5 論文架構 12
第二章 超光譜系統之設計與建立 13
2.1 雙光子螢光原理 13
2.2 雙光子超光譜顯微系統之建立 14
2.3 光譜儀之設計與建立 16
2.3.1 光譜維度之設計 17
2.3.2 空間維度之設計 19
2.4 系統光譜校正 22
第三章 電控系統與光譜分析 26
3.1 電控系統程式 26
3.2 光譜分析法 28
第四章 雙光子超光譜影像 32
4.1 螢光微粒球 32
4.1.1 樣本備製與光譜量測 33
4.1.2 三維超光譜影像 34
4.1.3 空間解析度 36
4.1.4 混合螢光微粒球分子影像 40
4.2 黃金葛葉片 45
4.2.1 樣本備製 48
4.2.2 光譜量測與分析 49
4.2.3 光系統之分子影像 52
第五章 結論與未來發展 59
5.1 結論 59
5.2 未來研究方向 60
參考文獻 62
參考文獻 [1] X. Michalet and S. Weiss, “Single-molecule spectroscopy and microscopy,” Comptes Rendus Physique, 3(5), 619-644 (2002).
[2] S. Weiss, “Fluorescence spectroscopy of single biomolecules,” Science, 283(5408), 1676-1683 (1999).
[3] P. I. H. Bastiaens and A. Squire, “Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell,” Trends in Cell Biology, 9(2), 48-52 (1999).
[4] P. De Beule, D. M. Owen, H. B. Manning, C. B. Talbot, J. Requejo-Isidro, C. Dunsby, J. McGinty, R. K. P. Benninger, D. S. Elson, I. Munro, M. J. Lever, P. Anand, M. A. A. Neil, and P. M. W. French, “Rapid hyperspectral fluorescence lifetime imaging,” Microscopy Research and Technique, 70(5), 481-484 (2007).
[5] W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proceedings of the National Academy of Sciences of the United States of America, 100(12), 7075-7080 (2003).
[6] P. Colarusso, L. H. Kidder, I. W. Levin, J. C. Fraser, J. F. Arens, and E. N. Lewis, “Infrared spectroscopic imaging: From planetary to cellular systems,” Applied Spectroscopy, 52(3), 106A-120A (1998).
[7] Z. P. Lee, K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock, and C. O. Davis, “Model for the interpretation of hyperspectral remote-sensing reflectance,” Applied Optics, 33(24), 5721-5732 (1994).
[8] Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization,” Applied Optics, 38(18), 3831-3843 (1999).
[9] D. Bannon, “Hyperspectral imaging cubes and slices,” Nature Photonics, 3, 627-629 (2009).
[10] H. Akbari, L. V. Halig, D. M. Schuster, A. Dewhirst, V. Master, P. T. Nieh, G. Z. Chen, and B. W. Fei, “Hyperspectral imaging and quantitative analysis for prostate cancer detection,” Journal of Biomedical Optics, 17(7), 076005 (2012).
[11] L. L. Randeberg, E. L. Larsen, and L. O. Svaasand, “Characterization of vascular structures and skin bruises using hyperspectral imaging, image analysis and diffusion theory,” Journal of Biophotonics, 3(1-2), 53-65 (2010).
[12] B. S. Sorg, B. J. Moeller, O. Donovan, Y. T. Cao, and M. W. Dewhirst, “Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development,” Journal of Biomedical Optics, 10(4), 44004 (2005).
[13] G. Zavattini, S. Vecchi, G. Mitchell, U. Weisser, R. M. Leahy, B. J. Pichler, D. J. Smith, and S. R. Cherry, “A hyperspectral fluorescence system for 3D in vivo optical imaging,” Physics in Medicine and Biology, 51(8), 2029-2043 (2006).
[14] Y. Hiraoka, T. Shimi, and T. Haraguchi, “Multispectral imaging fluorescence microscopy for living cells,” Cell Structure and Function, 27(5), 367-374 (2002).
[15] P. J. Cutler, M. Malik, S. Liu, J. Byars, D. Lidke, and K. Lidke, “Multi-color quantum dot tracking using a high-speed hyperspectral line-scanning microscope,” Plos One, 8(5), e64320 (2013).
[16] R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: A novel approach for microscopic analysis,” Cytometry, 43(4), 239-247 (2001).
[17] M. Rajadhyaksha, M. Grossman, D. Esterowitz, and R. H. Webb, “In-vivo confocal scanning laser microscopy of human skin - melanin provides strong contrast ” Journal of Investigative Dermatology, 104(6), 946-952 (1995).
[18] M. C. Pedroso, M. B. Sinclair, H. D. T. Jones, and D. M. Haaland, “Hyperspectral confocal fluorescence microscope: A new look into the cell,” Microscopy and Microanalysis, 15, 880-881 (2009).
[19] M. B. Sinclair, D. M. Haaland, J. A. Timlin, and H. D. T. Jones, “Hyperspectral confocal microscope,” Applied Optics, 45(24), 6283-6291 (2006).
[20] L. E. Grosberg, A. J. Radosevich, S. Asfaha, T. C. Wang, and E. M. C. Hillman, “Spectral characterization and unmixing of intrinsic contrast in intact normal and diseased gastric tissues using hyperspectral two-photon microscopy,” Plos One, 6(5), e19925 (2011).
[21] A. J. Radosevich, M. B. Bouchard, S. A. Burgess, B. R. Chen, and E. M. C. Hillman, “Hyperspectral in vivo two-photon microscopy of intrinsic contrast,” Optics Letters, 33(18), 2164-2166 (2008).
[22] K. B. Im, M. S. Kang, J. Kim, F. Bestvater, Z. Seghiri, M. Wachsmuth, and G. Grailhe, “Two-photon spectral imaging with high temporal and spectral resolution,” Optics Express, 18(26), 26905-26914 (2010).
[23] Y. M. Wang, S. Bish, J. W. Tunnell, and X. J. Zhang, “MEMS scanner enabled real-time depth sensitive hyperspectral imaging of biological tissue,” Optics Express, 18(23), 24101-24108 (2010).
[24] F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nature Methods, 2(12), 932-940 (2005).
[25] W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science, 248(4951), 73-76 (1990).
[26] D. W. Piston, B. R. Masters, and W. W. Webb, “3-Dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in-situ cornea with 2-photon excitation laser-scanning microscopy,” Journal of Microscopy-Oxford, 178, 20-27 (1995).
[27] I. T. Jolliffe, Principle Component Analysis. Springer, New York (2002).
[28] M. E. Dickinson, G. Bearman, S. Tille, R. Lansford, and S. E. Fraser, “Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy,” Biotechniques, 31(6), 1272,1274-6,1278 (2001).
[29] Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: Principles and applications,” Cytometry Part A, 69A(8), 735-747 (2006).
[30] http://zeiss-campus.magnet.fsu.edu/index.html
[31] G. peters and J. H. Wilkinson, “The least squares problem and pseudo-inverses,” The Computer Journal, 13, 309-316 (1970).
[32] F. Bestvater, E. Spiess, G. Stobrawa, M. Hacker, T. Feurer, T. Porwol, U. Berchner-Pfannschmidt, C. Wotzlaw, and H. Acker, “Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging,” Journal of Microscopy-Oxford, 208, 108-115 (2002).
[33] http://en.wikipedia.org/wiki/Photosynthesis
[34] http://legacy.owensboro.kctcs.edu/gcaplan/bio/notes
[35] C. Buschmann, “Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves,” Photosynthesis Research, 92(2), 261-271 (2007).
[36] R. Pedros, I. Moya, Y. Goulas, and S. Jacquemoud, “Chlorophyll fluorescence emission spectrum inside a leaf,” Photochemical & Photobiological Sciences, 7(4), 498-502 (2008).
[37] N. Subhash and C. N. Mohanan, “Curve-fit analysis of chlorophyll fluorescence spectra: Application to nutrient stress detection in sunflower,” Remote Sensing of Environment, 60(3), 347-356 (1997).
[38] B. A. Pollok and R. Heim, “Using GFP in FRET-based applications,” Trends in Cell Biology, 9(2), 57-60 (1999).
[39] E. A. Jares-Erijman and T. M. Jovin, “FRET imaging,” Nature Biotechnology, 21(11), 1387-1395 (2003).
[40] http://microscopy.berkeley.edu/courses/TLM/fluor_techniques/fret.html
指導教授 陳思妤 審核日期 2013-8-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明