博碩士論文 100226022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.149.214.32
姓名 陳瑞泓(Ruei-hung Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 具垂直耦光45˚矽基反射面之高分子聚合物波導應用於20-Gbps單晶片光學連接模組
(On-Chip 20-Gbps Optical Interconnect Modules Using Polymer Waveguides Terminated with 45-degree Reflectors as Vertical Couplers)
相關論文
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 以矽光學平台為基礎之4通道×10-Gbps 光學連結模組之接收端研究
★ 透明導電層上之高分子聚合物微奈米光學結構於氮化鎵發光二極體光學特性研究★ 具45度反射面之非共平面轉折波導光路
★ 以矽光學平台為基礎之4通道 x 10 Gbps光學連結模組之發射端★ 具三維光路之光連接發射端模組
★ 矽基光學平台技術為核心之雙向4通道 x 10-Gbps光學連接收發模組★ 建立於矽基光學平台之高分子聚合物波導光路
★ 適用於色序式微型投影機之微透鏡陣列積分器光學系統研製★ 發光二極體色溫控制技術及其於色序式微型投影機之應用
★ 具45˚矽基反射面高分子聚合物波導之10-Gbps晶片內部光學連接收發模★ 在陶瓷基板實現高速穿孔架構之5-Gbps光學連接模組
★ 具垂直分岔光路之10-Gbps雙輸出矽基光學連接模組★ 利用光展量概念之微型投影機光學設計方法與實作
★ 以1 × 2垂直分岔高分子聚合物光路實現單晶片20-Gbps矽基光學連接模組★ 利用三維矽波導光路實現10-Gbps單晶片光學連接模組
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文提出一個將高分子聚合物波導和具45˚反射面矽基光學平台整合之垂直耦光光路,並成功整合雷射光源、光偵測器、驅動電路與放大電路於單晶片模組,其為光學連接技術領域首次達成在單晶片上的單通道20-Gbps光學連接模組。本模組架構建立在一個具有45˚矽基反射面之高分子聚合物波導之矽基光學平台上,利用驅動電路與放大電路對面射型雷射及光偵測器進行控制。其雷射光源經由45˚反射面達到非共平面轉折,並耦合至高分子聚合物波導;再藉由相對應之45˚反射面,將波導內的光訊號耦合至光偵測器。採用具45˚反射面之矽基光學平台,可達到三維光路之建構,並連接模組之發射端與接收端。
本光學連接模組具有高光學耦合效率且製程簡單,波導核心製程可自由調整變化其比例,以達到主動光電元件與光波導之結構尺寸匹配。高精度之覆晶封裝技術可將面射型雷射與光偵測器封裝於矽基光學平台上,其對位精度可控制在±5 m。經由覆晶封裝技術與45˚矽基反射面之高分子聚合物波導之發展,面射型雷射至光偵測器之光學耦合效率可達到34 %。
在高頻訊號量測方面,本模組架構可達到單通道20-Gbps高速傳輸能力。其模組輸入訊號為27-1的假隨機二進位序列(Pseudo Random Binary Sequence, PRBS)。模組發射端之雷射驅動電流與調製電流分別為8.3 mA與±4.69 mA,;模組接收端之光偵測器操作逆向偏壓為1.7 V。本模組發射端至接收端之眼圖量測,其抖動(jitter)為17.681 ps、眼高(Eye Height)為123 mV,訊號之訊雜比可達到7.56。量測之誤碼率可低於10-12等級,證明了本模組具有20-Gbps高頻傳輸能力。
摘要(英) In this investigation, an on-chip 20-Gbps optical interconnect module is realized on polymer waveguides terminated with 45° micro-reflectors as vertical couplers. The proposed module including vertical-cavity surface-emitting laser (VCSEL), Photodetector (PD), driver IC, and amplifier IC is constructed on single silicon substrate. It’s first time to demonstrate a 20-Gbps per channel in on-chip optical interconnect.
The driver and amplifier IC are employed to control the VCSEL and PD, respectively. In the transmitting part, the lightwave emitting from VCSEL impinge upon 45° micro-reflectors, and couple into polymer waveguide. In the receiving part, the lightwave propagating in the polymer waveguide is bent by 45° micro-reflectors and emitted into PD. Due to adopt the polymer waveguides terminated with 45° micro-reflectors, the lightwave could be formed three-dimensional optical, and connect the optical signal between transmitting and receiving parts.
The proposed optical interconnect provide the benefit of high optical coupling efficiency and simply fabrication process. Due to tune the geometric core size of polymer waveguide, the optical mode between active photoelectric components and polymer waveguide could be matched to enhance the optical coupling efficiency. The high precision flip-chip technique could be employed to assemble the VCSEL and PD on proposed module, the assembling alignment tolerance could be controlled within ±5 um. The optical coupling efficiency between VCSEL and PD is measured as 34%
In the high–speed signal measurement, the 20-Gbps error-free transmission with pseudo-random binary sequence (PRBS) of 27-1 is demonstrated. In this module, the driving and modulation current is set as 8.3 and ±4.69 mA, respectively, and the reverse bias of PD is about 1.7 V. In the eye diagram measurement, the jitter of 17.681 ps and eye height of 13 mV are measured. The signal-to-noise ratio is measured as 7.56. The bit error rate could be pass the 10-12, it’s prove that the proposed module can be used in transmission of data-rate of 20-Gbps.
關鍵字(中) ★ 光學連結模組
★ 45度微反射面
★ 光波導
★ 非共平面耦合
關鍵字(英) ★ optical interconnect modules
★ micro mirrors
★ optical waveguides
★ vertical coupler
論文目次 摘要 i
Abstract iii
目錄 iv
圖目錄 vi
表目錄 x
第一章 緒論 1
1-1 光學連接技術之發展 1
1-2 單晶片光學連接技術發展現況與比較 4
1-3 單晶片光學連接模組之研發 9
第二章 垂直耦光之單晶片光學連接模組設計 11
2-1 垂直耦光之高分子聚合物波導光學設計與模擬 11
2-1-1 垂直耦光之高分子聚合物波導光學設計 11
2-1-2 垂直耦光之高分子聚合物波導光學模擬 15
2-2 單晶片光學連接模組之高頻傳輸線設計與分析 19
2-2-1 高頻傳輸線數值分析方法 19
2-2-2 單晶片光學連接模組之高頻傳輸線設計 20
第三章 垂直耦光之單晶片光學連接模組製程 26
3-1 單晶片光學連接模組之矽基光學平台製程開發 26
3-2 單晶片光學連接模組之光波導製程與開發 30
3-3 光學連接模組之高頻傳輸線與接合墊製程 34
3-4 垂直耦光之單晶片光學連接模組之封裝製程 37
第四章 單晶片光學連接模組之高頻特性量測 40
4-1 單晶片光學連接模組之直流特性量測 40
4-2-1 面射型雷射與光檢測器之特性量測 40
4-2-2 光學連接模組之光學耦合效率量測 43
4-2 高頻傳輸線散射參數之量測 45
4-3 頻率響應的量測 48
4-4 具垂直耦光20-Gbps單晶片光學連接模組之高頻量測 51
第五章 結論與未來展望 55
參考文獻 57
參考文獻 [1] M. Aljada, K. E. Alameh, Y. T. Lee, and I. S. Chung, “High-speed (2.5 Gbps)reconfigurable inter-chip optical interconnects using opto-VLSI processors,” Opt.Express, 14(15), 6823-6836 (2006).
[2] X. Wang and R. T. Chen, “Fully embedded board level optical interconnects —From point-to-point interconnection to optical bus architecture,” Proc. SPIE, 6899, 6899031-6899039 (2008).
[3] S. Hiramatsu and T. Mikawa, “Optical design of active interposer for high-speed chip level optical interconnects,” IEEE J. Sel. Top. Quantum Electron, 24(2), 927-934 (2006).
[4] D. A. B. Miller, “Rationale and challenges for optical interconnects toelectronic chips,” Proceedings of the IEEE, 88 (6), 728-749, (2000).
[5] R. Ho, K. Mai, and M. Horowitz, “The Future of Wires, ” IEEE, 89(4), 490-504 (2001).
[6] R. Heming, L. C. wittig, P. Dannberg, J. Jahns, E. B. Kley, and M.Gruber, “Efficient planar-integrated free-space optical interconnects fabricated by a combination of binary and analog lithography,” IEEE Journal. Lightwave Technol, 26, 2136-2141, (2008).
[7] P. Lukowicz et al., “Optoelectronic interconnection technology in the HOLMS system,” IEEE Journal. Sel. Top. Quantum Electron, 9, 624-635 (2003).
[8] H. L. Althaus, W. Gramann, and K. Panzer, “Microsystems and wafer processesfor volume production of highly reliable fiber optic components for telecom-anddatacom-application,” IEEE Trans. On Compon., Packag., and Manufact. Technol. pt. B, 21, 147-156 (1998).
[9] David A. B. Miller “Physical Reasons for Optical Interconnection,” Int. J.Optoelectronics 11, 155-168 (1997)
[10] David A. B. Miller “Device Requirement for Optical Interconnects to Silicon Chips,” IEEE, 97(7), 1166-1189 (2009)
[11] J. A. Davis, R Venkatesan, A. Kaloyeros, M. Beylansky, S. J. Souri, K. Banerjee, K. C. Saraswat, A. Rahamn, R. Reif, and J. D. Meindl, “Interconnect Limits on Gigascal Intergration (GSI) in the 21st Century” Proc. IEEE Micro, 89, 305-324 (2001).
[12] David A. B. Miller and H. M. Ozaktas, “Limit to the Bit-Rate Capacity of Electrical Interconnects from the Aspect Ratio of the System Architecture” J. Parallel Distrib. Comput., 41, 4252 (1997).
[13] K. C. Sarawat and F. Mohammadi, “Effect of Scaling of Interconnections on the Time Delay of VLSI Circuit” IEEE Trans. Electron Devices, 29(4), 645-650 (1982).
[14] Hirohito Yamada, Michinao Nozawa, Masao Kinoshita, and Keishi Ohashi, “Vertical-coupling optical interface for on-chip optical interconnection” OPTICS EXPRESS, 19(2), 698-703 (2011).
[15] B. Ciftcioglu et.al. “3-D integrated heterogeneous intra-chip free-space optical interconnect,” Opt. Express, 20, 4331 – 4345 (2012).
[16] Y. Urino et.al. “First demonstration of high density optical interconnects integrated with lasers, optical modulators, and photodetectors on single silicon substrate,” Opt. Express, 19, B159 – B165, Nov. (2011).
[17] Yasuhiko Arakawa, Takahiro Nakamura, “Silicon Photonics for Next Generation System Integration Platform,” IEEE Communications Magazine, 13,72-77 (2013).
[18] 梁凱, “Intra-Chip 10-Gbps Optical Interconnect Module Using Polymer Waveguide with Silicon-Based 45˚Micro-Reflectors,” 中央大學光電所碩士論文, 台灣 (2011).
[19] 陳進達, “以矽基光學平台為基礎之4通道 × 10-Gbps光學連接模組之接收端研究,” 中央大學光電碩士論文, 台灣 (2010)
[20] David M. Pozer “Microwave Engineering” John Wiley & Sons, Inc. 2005
[21] 許志宏, “具繞射式光學元件之矽基45微反射面研究,” 中央大學光電所碩士論文, 台灣 (2007)
[22] Kun-Mo Chu, Jung-Sub Lee, Byung Sup Rho, Han Seo Cho, Hyo-Hoon Park, and Duk Young Jeon. “Optimization of low temperature flip chip bonding for VCSEL arrays for polymeric-waveguide-integrated optical interconnection systems,” 9th Microoptics Conference MOC’03, 29-31, (2003).
[23] Gary Breed Editorial Director. “Analyzing Signals Using the Eye Diagram,” High Frequency Electronic, (2005).
指導教授 伍茂仁(Mao-Jen Wu) 審核日期 2013-8-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明