博碩士論文 100226037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.141.41.187
姓名 陳瑋鑫(Wei-Hsin Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 小貓自泵相位共軛鏡於數位光學相位共軛與時間微分之研究
(The Study of Digital Optical Phase Conjugation and Novelty Filtering Based on Kitty Self-Pumped Phase Conjugator)
相關論文
★ 奈米電漿子感測技術於生物分子之功能分析★ 表面結構擴散片之設計、製作與應用
★ 結合柱狀透鏡陣列之非成像車頭燈光型設計★ CCD 量測儀器之研究與探討
★ 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用★ 多光束繞射光學元件應用在DVD光學讀取頭之設計
★ 高位移敏感度之全像多工光學儲存之研究★ 利用亂相編碼與體積全像之全光學式光纖感測系統
★ 體積光柵應用於微物3D掃描之研究★ 具有偏極及光強分佈之孔徑的繞射極限的研究
★ 三維亂相編碼之體積全像及其應用★ 透鏡像差的量測與MTF的驗證
★ 二位元隨機編碼之全像光學鎖之研究★ 亂相編碼於體積全像之全光學分佈式光纖感測系統之研究
★ 自發式相位共軛鏡之相位穩定與應用於自由空間光通訊之研究★ 體積全像空間濾波器應用於物體 三度空間微米級位移之量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文提出將小貓自泵相位共軛鏡應用在數位光學相位共軛器之建立與利用其來建構相位共軛時間微分器;藉由小貓自泵相位共軛鏡所具備之共軛訊號無像差及快速穩定等特性,我們得以建立高效能數位光學相位共軛器,與文獻上所提方法比較,其可克服各文獻方法之缺點;此外,結合電光調製器與小貓自泵相位共軛鏡,我們發展出一套相位共軛時間微分器,並將其用來做自追蹤,及在散射物體裡面產生聚焦訊號。
摘要(英) In this thesis, we propose a new method for the alignment of a digital optical phase conjugator (DOPC) and the design of a phase conjugate novelty filter based on the Kitty self-pumped phase conjugate mirror (Kitty-SPPCM). Kitty-SPPCM has advantages such like short response time and insensitivity to the environment. Our method of DOPC alignment includes all benefits for DOPC from various literature methods. Additionally, we design a phase conjugate novelty filter with Kitty-SPPCM and electro-optic modulator (EOM). In this research, we apply the phase conjugate novelty filter to do self-tracking and produce a focal point inside diffuse objects.
關鍵字(中) ★ 小貓自泵相位共軛鏡
★ 相位共軛
★ 數位光學相位共軛
★ 時間微分
關鍵字(英) ★ Kitty self-pumped phase conjugate mirror
★ phase conjugation
★ digital optical phase conjugation
★ novelty filter
論文目次 摘要 i
ABSTARCT ii
誌謝 iii
目錄 v
圖索引 viii
表索引 xi
第一章 緒論 1
1.1 研究動機與挑戰 1
1.2 OPC之發展 3
1.3 DOPC之發展與應用 4
1.3.1 Yang團隊於2010年建立之DOPC 6
1.3.2 Yang團隊於2012年建立之DOPC 9
1.3.3 Feld團隊建立之DOPC 10
1.3.4 各DOPC之優劣比較 13
1.4 光學時間微分器之發展與應用 15
1.5 論文大綱與安排 17
第二章 原理 18
2.1 全像術 18
2.2 Whittaker-Shannon取樣定理與Space-bandwidth product 20
2.3 Cat-SPPCM 22
2.4 Kitty-SPPCM 24
2.5 散射係數μs、吸收係數μa與總衰減係數μt 26
第三章 DOPC之建立 30
3.1 Kitty-SPPCM於DOPC之對位 30
3.2 DOPC相位分布擷取與共軛訊號的產生 35
3.3 第一版DOPC架構測試 37
3.4 球面波照射SLM產生對位影像以增加對位時的縱向精確度 41
3.5 利用Kitty-SPPCM偵測讀取光以改善DOPC效能 48
3.6 DOPC效能測試 55
第四章 相位共軛時間微分器 60
4.1 相位共軛時間微分器之建立與自追蹤 60
4.2 利用相位共軛時間微分器在散射物質內部聚焦 67
第五章 結論 70
參考文獻 71
中英文名詞對照表 76
參考文獻 1. A. E. Chiou, T.-Y. Chang, and M. Khoshnevisar, "High-speed photorefractive phase conjugator with wide intensity dynamic range and wide field of view," in OSA Annual Meeting, Vol. 15, 1990 OSA Technical Digest Series, (Optical Society of America, 1990), p. 40.
2. M. Cui and C. Yang, "Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation," Opt. Express 18, 3444-3455 (2010).
3. P. Yeh, Introduction to Photorefractive Nonlinear Optics (John Wiley & Sons, New York, 1993).
4. M. Fink, "Time reversal of ultrasonic fields. I. Basic principles," IEEE Trans. Ultrason., Ferroelectr., Freq. Control 39, 555-566 (1992).
5. Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, "Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light," Nat. Commun. 3, 928 (2012).
6. T. R. Hillman, T. Yamauchi, W. Choi, R. R. Dasari, M. S. Feld, Y. Park, and Z. Yaqoob, "Digital optical phase conjugation for delivering two-dimensional images through turbid media," Sci. Rep. 3, 1909 (2013).
7. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, "Optical phase conjugation for turbidity suppression in biological samples," Nat. Photonics 2, 110-115 (2008).
8. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, "Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3," Appl. Phys. Lett. 9, 72 (1966).
9. F. S. Chen, J. T. LaMacchia, and D. B. Fraser, "Holographic storage in lithium niobate," Appl. Phys. Lett. 13, 223 (1968).
10. F. S. Chen, "Optical induced change of refractive indices in LiNbO3 and LiTaO3," J. Appl. Phys. 40, 3389 (1969).
11. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electro-optic crystals. I. Steady state," Ferroelectrics 22, 949 (1979).
12. J. Feinberg, "Asymmetric self-defocusing of an optical beam from the photorefractive effect," J. Opt. Soc. Am. 72, 46-51 (1982).
13. P. Yeh, "Two-wave mixing in nonlinear media," IEEE J. Quant. Electron. 25, 484-519 (1989).
14. A. Yariv and D. M. Pepper, "Amplified reflection, phase conjugation, and oscillation in degenerate four-wave mixing," Opt. Lett. 1, 16-18 (1977).
15. M. Cronin-Golomb, J. O. White, B. Fischer, and A. Yariv, "Exact solution of a nonlinear model of four-wave mixing and phase conjugation," Opt. Lett. 7, 313-315 (1982).
16. R. A. Fisher, Optical Phase Conjugation (Academic Press, New York, 1983).
17. C.-C. Sun, R.-H. Tsou, W. Shen, H.-H. Chang, J.-Y. Chang, and M.-W. Chang, "Shearing interferometer with a Kitty self-pumped phase-conjugate mirror," Appl. Optics 35, 1815-1819 (1996).
18. W.-C. Su, C.-C. Sun, Y.-C. Chen, and Y. Ouyang, "Duplication of phase key for random-phase-encrypted volume holograms," Appl. Optics 43, 1728-1733 (2004).
19. C.-C. Sun and W.-C. Su, "Three-dimensional shifting selectivity of random phase encoding in volume holograms," Appl. Optics 40, 1253-1260 (2001).
20. C.-C. Sun, S. Yeh, M.-W. Chang, and K. Y. Hsu, "Optimal incident conditions for a Cat-type self-pumped phase-conjugate mirror," Appl. Optics 31, 5769-5772 (1992).
21. B. Wang, C.-C. Sun, W.-C. Su, and A. E. Chiou, "Shift-tolerance property of an optical double-random phase-encoding encryption system," Appl. Optics 39, 4788-4793 (2000).
22. W.-C. Su, Y.-W. Chen, Y. Ouyang, C.-C. Sun, and B. Wang, "Optical identification using a random phase mask," Opt. Commun. 219, 117-123 (2003).
23. C.-C. Sun, W.-C. Su, B. Wang, and A. E. Chiou, "Lateral shifting sensitivity of a ground glass for holographic encryption and multiplexing using phase conjugate readout algorithm," Opt. Commun. 191, 209-224 (2001).
24. H. F. Yau, H. C. Kung, H. Y. Lee, C. C. Sun, T. C. Chen, C. C. Chang, Y. P. Tong, and J. Chen, "Ordinary polarized phase conjugator using the photovoltaic effect," Opt. Commun. 184, 257-263 (2000).
25. J. Feinberg, "Self-pumped, continuous-wave phase conjugator using internal reflection," Opt. Lett. 7, 486-448 (1982).
26. J. O. White, M. Cronin-Golomb, B. Fischer, and A. Yariv, "Coherent oscillation by self‐induced gratings in the photorefractive crystal BaTiO3," Appl. Phys. Lett. 40, 450-452 (1982).
27. A. E. Chiou, "Photorefractive phase-conjugate optics for image processing, trapping, and manipulation of microscopic objects," Proc. IEEE 87, 2074-2085 (1999).
28. M. Cui and C. Yang, "Turbidity suppression by optical phase conjugation using a spatial light modulator," California Institute of Technology, US Patent US20110122416 A1 (2011).
29. C.-L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, "Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle," Opt. Express 18, 20723-20731 (2010).
30. C.-L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, "Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media," Opt. Express 18, 12283-12290 (2010).
31. X. Yang, C.-L. Hsieh, Y. Pu, and D. Psaltis, "Three-dimensional scanning microscopy through thin turbid media," Opt. Express 20, 2500-2506 (2012).
32. I. M. Vellekoop, M. Cui, and C. Yang, "Digital optical phase conjugation of fluorescence in turbid tissue," Appl. Phys. Lett. 101, 081108 (2012).
33. B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, "Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE)," Nat. Photonics 7, 300-305 (2013).
34. K. Si, R. Fiolka, and M. Cui, "Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation," Nat. Photonics 6, 657-661 (2012).
35. Y. M. Wang and C. Yang, "Acoustic-assisted iterative wave form optimization for deep tissue focusing," California Institute of Technology, US Patent US20120070817 A1 (2012).
36. M. Jang, A. Sentenac, and C. Yang, "Optical phase conjugation (OPC)-assisted isotropic focusing," Opt. Express 21, 8781-8792 (2013).
37. M. Cui and C. Yang, "Optical phase conjugation 4 pi microscope," California Institute of Technology, US Patent US20110109962 A1 (2011).
38. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, "Focusing and scanning light through a multimode optical fiber using digital phase conjugation," Opt. Express 20, 10583-10590 (2012).
39. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, "High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber," Biomed. Opt. Express 4, 260-270 (2013).
40. D. Z. Anderson, D. M. Lininger, and J. Feinberg, "Optical tracking novelty filter," Opt. Lett. 12, 123-125 (1987).
41. D. Gabor, G. W. Stroke, R. Restrick, A. Funkhouser, and D. Brumm, "Optical image synthesis (complex amplitude addition and subtraction) by hollographic fourier transformation," Phys. Lett. 18, 116-118 (1965).
42. A. E. Chiou and P. Yeh, "Parallel image subtraction using a phase-conjugate Michelson interferometer," Opt. Lett. 11, 306-308 (1986).
43. M. Cronin-Golomb, A. M. Biernacki, C. Lin, and H. Kong, "Photorefractive time differentiation of coherent optical images," Opt. Lett. 12, 1029-1031 (1987).
44. V. V. Krishnamachari, O. Grothe, H. Deitmar, and C. Denz, "Novelty filtering with a photorefractive lithium–niobate crystal," Appl. Phys. Lett. 87, 071105 (2005).
45. M. Woerdemann, F. Holtmann, and C. Denz, "Full-field particle velocimetry with a photorefractive optical novelty filter," Appl. Phys. Lett. 93, 021108 (2008).
46. V. V. Krishnamachari, Photorefractive novelty filter microscope: The system and its applications (Cuvillier Verlag, Göttingen, 2005).
47. D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948).
48. E. N. Leith and J. Upatnieks, "Reconstructed wavefronts and communication theory," J. Opt. Soc. Am. 52, 1123-1128 (1962).
49. E. N. Leith and J. Upatnieks, "Wavefront reconstruction with continuous-tone objects," J. Opt. Soc. Am. 53, 1377-1381 (1963).
50. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).
51. W.-F. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quant. Electron. 26, 2166-2185 (1990).
52. E. Cuche, F. Bevilacqua, and C. Depeursinge, "Digital holography for quantitative phase-contrast imaging," Opt. Lett. 24, 291-293 (1999).
53. I. Yamaguchi and T. Zhang, "Phase-shifting digital holography," Opt. Lett. 22, 1268-1270 (1997).
54. I. Moreno, A. Lizana, A. Márquez, C. Iemmi, E. Fernández, J. Campos, and M. J. Yzue, "Time fluctuations of the phase modulation in a liquid crystal on silicon display: characterization and effects in diffractive optics," Opt. Express 16, 16711-16722 (2008).
55. E. J. McDowell, M. Cui, I. M. Vellekoop, V. Senekerimyan, Z. Yaqoob, and C. Yang, "Turbidity suppression from the ballistic to the diffusive regime in biological tissues using optical phase conjugation," J. Biomed. Opt. 15, 025004 (2010).
56. H. Liu, X. Xu, P. Lai, and L. V. Wang, "Time-reversed ultrasonically encoded optical focusing into tissue-mimicking media with thickness up to 70 mean free paths," J. Biomed. Opt. 16, 086009 (2011).
57. P. Lai, X. Xu, H. Liu, and L. V. Wang, "Time-reversed ultrasonically encoded optical focusing in biological tissue," J. Biomed. Opt. 17, 030506 (2012).
58. P. Lai, X. Xu, H. Liu, Y. Suzuki, and L. V. Wang, "Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media," J. Biomed. Opt. 16, 080505 (2011).
59. X. Xu, H. Liu, and L. V. Wang, "Time-reversed ultrasonically encoded optical focusing into scattering media," Nat. Photonics 5, 154-157 (2011).
指導教授 孫慶成、陳思妤
(Ching-Cherng Sun、Szu-Yu Chen)
審核日期 2013-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明