博碩士論文 100226069 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:52.23.219.12
姓名 賴正川(Cheng-chuan Lai)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 矽基板上的氮化物太陽能電池
(Nitride-based solar cells grown on Si substrates)
相關論文
★ 影像式外差干涉術之建立★ 陶瓷基板上的高壓薄膜氮化鎵發光二極體之設計、製作與分析
★ 矽基板上的氮化鎵異質磊晶術★ 矽摻雜氮化鎵之光伏特性:中間能帶太陽能電池的潛力評估
★ 以氧化鋅薄膜輔助成長於矽基板上的氮化鎵磊晶層★ 氮化物光伏元件之製程優化及硒化鎘量子點的應用
★ 矽基板上的氮化鎵磊晶術:以氧化鎵為緩衝★ 具穿隧結構之反向極化電場氮化銦鎵發光二極體
★ 強度敏感式影像橢圓儀及應用★ 成長於同調性基板的氮化鎵及氮化鋁磊晶層
★ 以奈米異質磊晶術在矽基板上成長的半極性氮化銦鎵量子井★ 以漸變銦含量的主動層增加氮化銦鎵光伏元件的載子收集率
★ 氧化鋅的熱分解對矽基板上氮化鎵奈米異質磊晶的影響★ 溫度效應對矽基板上的氮化鎵有機金屬氣相沉積法之探討
★ 氮化物表面電漿生醫感測之理論分析★ 以氮化物表面電漿結構研製的生醫感測微晶片
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 氮化銦鎵的能隙範圍涵蓋大部分的太陽光譜,若以此種三元化合物製作太陽能電池,在理論上可達到幾近全光譜的吸收,產生極高的能量轉換效率。在吸光層結構的設計中,氮化銦鎵/氮化鎵多重量子井是很受歡迎的一種,這是因為氮化銦鎵量子井具備兼顧晶格品質及可見光吸收能力的優點。有鑑於矽基板的低成本與良好的散熱性,我們使用金屬有機化學氣相沉積法,在矽基板上成長氮化銦鎵多重量子井太陽能電池。
在本篇研究中,我們製作了三種不同銦含量的氮化銦鎵/氮化鎵多重量子井太陽能電池。在AM 1.5G的模擬光源照射下,元件的轉換效率最高為0.133%;而當聚光倍率增加為105倍時,轉換效率可達0.168%,效率提升幅度則是接近23%,此效率提升可歸功於矽基板良好的散熱性。
在元件的製程上,我們也探討Ni/Au透明導電層及n-GaN蝕刻深度對元件特性的影響。就量測結果來看,Ni/Au透明導電層能幫助元件蒐集光電子,而適當的n-GaN蝕刻深度,則能幫助電池得到較高的填充因子。
摘要(英) The wide bandgap span (0.7 – 3.4 eV) of InGaN has drawn increasing research interest in photovoltaics due to its potential to realize nearly full absorption of the entire solar spectrum. In the structure design for light-absorbing layers, InGaN/GaN multiple quantum wells (MQW) are among the most popular because of their superior crystal qualities and visible-wavelength absorption capabilities. In light of the low cost and the excellent heat dissipation of silicon substrates, we have grown and fabricated InGaN-based MQW solar cells on silicon substrates using metal organic chemical vapor deposition.
In this project, we studied three types of InGaN/GaN MQW solar cells with different indium contents. The highest conversion efficiency was 0.133% under the illumination of AM 1.5G. As the concentration ratios increased from 1-sun to 105-sun, the efficiency went up to 0.168%. The result was attributed to the efficient heat sinking of the Si substrate.
In addition, we also investigated the effects of Ni/Au transparent conductive layer and the etching depth of n-GaN on the performances of the devices. The results indicate that the transparent conductive layer is beneficial to carrier collection efficiencies, and a proper etching depth of n-GaN can maximize the fill factor of the solar cells.
關鍵字(中) ★ 矽基板
★ 氮化銦鎵
★ 太陽能電池
★ 量子井
關鍵字(英) ★ silicon substrate
★ InGaN
★ solar cell
★ quantum well
論文目次 論 文 摘 要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 V
表目錄 VII
英文名詞縮寫對照表 VIII
第一章、 簡介 - 1 -
1.1 太陽能電池工作原理與等效電路 - 1 -
1.2 研究動機 - 5 -
1.3 論文架構 - 10 -
第二章、試片製備與及量測儀器介紹 - 11 -
2.1 磊晶結構 - 11 -
2.2 元件製程 - 15 -
2.3 量測系統介紹 - 21 -
第三章、量測結果與討論 - 24 -
3.1光致螢光(PL)激發光譜量測 - 24 -
3.2 X光繞射(XRD)光譜量測 - 26 -
3.3 電流密度-電壓(J-V)量測 - 28 -
3.4 外部量子效率(EQE)的量測 - 37 -
3.5 聚光下的光伏特性 - 38 -
3.6光伏特性的改進之道 - 42 -
第四章、結論與未來發展 - 47 -
4.1 結論 - 47 -
4.2 未來發展 - 48 -
參考文獻 - 49 -
參考文獻 [1]J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, Hai Lu, William J. Schaff, Yoshiki Saito, Yasushi Nanishi, “Unusual properties of the fundamental band gap of InN”, Appl. Phys. Lett. 80 (2002) 3967-3969.
[2]T. L. Tansley, C. P. Foley, “Optical band gap of indium nitride”, J. Appl. Phys. 59 (1986) 3241-3244.
[3]J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system”, J. Appl. Phys. 94 (2003) 6477-6482.
[4]Y. Nanishi, Y. Saito, T. Yamaguchi, “RF-Molecular Beam Epitaxy Growth and Properties of InN and Related Alloys”, Jpn. J. Appl. Phys. Part 142 (2003) 2549-2559.
[5] M. Christian: Dr. Thesis, North Carolina State University, Raleigh (2005).
[6]K. W. J. Barnham, G. Duggan, “A new approach to high‐efficiency multi‐band‐gap solar cells”, J. Appl. Phys. 67 (1990) 3490-3493.
[7]P. M. F. J. Costa, R. Datta, M. J. Kappers, M. E. Vickers, C. J. Humphreys, D. M. Graham, P. Dawson, M. J. Godfrey, E. J. Thrush, J. T. Mullins, “Misfit dislocations in In-rich InGaN/GaN quantum well structures”, Phys. Stat. Sol. (a) 203 (2006) 1729-1732.
[8]H. R. Shanks, P. D. Maycock, P. H. Sidles, G. C. Danielson, “Thermal Conductivity of Silicon from 300 to 1400°K”, Phys. Rev. 130 (1963) 1743-1748.
[9]T. Egawa, B. Zhang, H. Ishikawa, “High performance of InGaN LEDs on (111) silicon substrates grown by MOCVD”, IEEE Electron Device Lett. 26 (2005) 169-171.
[10]A. Dadgar, C. Hums, A. Diez, J. Blasing, A. Krost, “Growth of blue GaN LED structures on 150-mm Si(1 1 1)”, J. Crystal Growth 297 (2006) 279-282.
[11]G.-T. Chen, J.-I. Chyi, C.-H. Chan, C.-H. Hou, C.-C. Chen, M.-N. Chang, “Crack-free GaN grown on AlGaN/(111)Si micropillar array fabricated by polystyrene microsphere lithography”, Appl. Phys. Lett. 91 (2007) 261910
[12]A. Krost, A. Dadgar, “GaN-Based Devices on Si”, Phys. Stat. Sol. (a) 194,No. 2 ,361-375(2002)
[13]A. Dadgar, J. Christen, T. Riemann, S. Richter, J. Blasing, A. Diez, A. Krost, A. Alam, M. Heuken, “Bright blue electroluminescence from an InGaN/GaN multi quantum-well diode on Si(111): Impact of an AlGaN/GaN multilayer”, Appl. Phys. Lett. 78 (2001) 2211-2213.
[14]D. Zhu, C. McAleese, M. Ha¨berlen, M. J. Kappers, N. Hylton, P. Dawson, G. Radtke, M. Couillard, G. A. Botton, S.-L. Sahonta, and C. J. Humphreys, “High-efficiency InGaN/GaN quantum well structures on large area silicon substrates”, Phys. Stat. Sol. (a) 209, No. 1, 13–16 (2012)
[15]S. Nakamura, T. Mukai, M. Senoh, N. Iwasa, “Thermal Annealing Effects on P-Type Mg-Doped GaN Films”, J. Appl. Phys. Vol. 31(1992) pp. L 139-L 142
[16]S. P. Lee, H. W. Jang, D. Y. Noh, and H. C. Kang, “Connected Au network in annealed Ni/Au thin films on p-GaN”, Appl. Phys. Lett. 91 (2007) 201905
[17]謝嘉民、賴一凡、林永昌、枋志堯,光激發螢光量測的原理、架構及應用,奈米通訊第十二卷第二期
[18]林麗娟,X光繞射原理及其應用,83年2月工業材料86期
[19]Yukio Narukawa, Yoichi Kawakami, Mitsuru Funato, Shizuo Fujita, Shigeo Fujita, and Shuji Nakamura, “Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm”, Appl. Phys. Lett. 70 (1997) 981-983.
[20]P. Chen, S. J. Chua, and Z. L. Miao, “Photoluminescence of InGaN/GaN multiple quantum wells originating from complete phase separation”, J. Appl. Phys. 93 (2003) 2507-2509.
[21]Yen-Sheng Lin, Kung-Jeng Ma, and C. Hsu, “Dependence of composition fluctuation on indium content in InGaNÕGaN multiple quantum wells”, Appl. Phys. Lett. 77 (2000) 2988-2990
[22]M. E. Vickers, M. J. Kappers, T. M. Smeeton, E. J. Trush, J. S. Barnard, C. J. Humphreys, “Determination of the indium content and layer thicknesses in InGaN/GaN quantum wells by x-ray scattering”, J. Appl. Phys. 94 (2003) 1565-1574.
[23]M. Tsuda, H. Furukawa, A. Honshio, M. Iwaya, S. Kami-yama, H. Amano, I. Akasaki, “Anisotropically Biaxial Strain in a-Plane AlGaN on GaN Grown on r-Plane Sapphire”, Jpn. J. Appl. Phys. 45 (2006) 2509-2513.
[24]K. Y. Lai, T. Paskova, V. D. Wheeler, T. Y. Chung, J. A. Grenko, M. A. L. Johnson, K. Udwary, E. A. Preble, K. R. Evans, “Indium incorporation in InGaN/GaN quantum wells grown on m-plane GaN substrate and c-plane sapphire”, Phys. Stat. Sol. (a) 209 (2012) 559-564.
[25]A. G. Bhuiyan, K. Sugita, A. Hashimoto, A. Yamamoto, “InGaN Solar Cells: Present State of the Art and Important Challenges”, IEEE J. Photovolt. Vol. 2, No. 3 (2012) 276-293.
[26]T. Chen, Y. Wang, P. Xiang, R. Luo, M. Liu, W. Yang, Y. Ren, Z. He, Y. Yang, W. Chen, X. Zhang, Z. Wu, Y. Liu, B. Zhang, “Crack-free InGaN multiple quantum wells light-emitting diodes structures transferred from Si (111) substrate onto electroplating copper submount with embedded electrodes”, Appl. Phys. Lett. 100 (2012) 241112.
[27]R. Dahal, J. Li, K. Aryal, J. Y. Lin, H. X. Jiang, “InGaN/GaN multiple quantum well concentrator solar cells”, Appl. Phys. Lett. 97 (2010) 073115.
[28]C. C. Yang, C. H. Jang, J. K. Sheu, M. L. Lee, S. J. Tu, F. W. Huang, Y. H. Yeh, W. C. Lai, “Characteristics of InGaN-based concentrator solar cells operating under 150X solar concentration”, Opt. Express 19 (2011) A695-A700.
[29]Takafumi Yao, Soon-Ku Hong (Eds.), “Oxide and Nitride Semiconductors: Processing, Properties, and Applications”, Springer, Berlin, 2009.
[30]J. P. Shim, S. R. Jeon, Y. K. Jeong, D. S. Lee, “Improved efficiency by using transparent contact layers in InGaN-Based p-i-n Solar Cells”, IEEE Electron Device Lett., vol. 31, no. 10 (2010) 724–726.
[31]K. Y. Lai, G. J. Lin, Y.-L. Lai, Y. F. Chen, J. H. He, “Effect of indium fluctuation on the photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells”, Appl. Phys. Lett. 96 (2010) 081103.
[32]Data adopted from the Best Research-Cell Efficiencies reported in 2013 by National Renewable Energy Laboratory (NREL), CO, USA. Results available at: http:/ /commons.wikimedia.org/wiki/File:Best_Research-Cell_Efficiencies.png
[33]R. A. Sinton, K. Young, J. Y. Gan, R. M. Swanson, “27.5-percent silicon concentrator solar cells”, IEEE Electron Device Lett. EDL-7 (1986) 567-569.
[34]B. W. Liou, “Design and fabrication of Inx Ga1 −x N/GaN solar cells with a multiple-quantum well structure on SiCN/Si(111) substrates”, Thin Solid Films, vol. 520, no. 3, pp. 1084–1090, Nov. 2011.
[35]F. K. Yam and Z. Hassan, “InGaN: An overview of the growth kinetics, physical properties and emission mechanisms”, Superlattices Microstruct., vol. 43, no. 1, pp. 1–23, Jan. 2008.
[36]I. K. Park, M. K. Kwon, S. H. Baek, Y. W. Ok, T. Y. Seong, S. J. Park, Y. S. Kim, Y. T. Moon, D. J. Kim, “Enhancement of phase separation in the InGaN layer for self-assembled In-rich quantum dots”, Appl. Phys. Lett. 87, 061906 (2005).
[37]J. J. Wierer, Jr., A. J. Fischer, D. D. Koleske, “The impact of piezoelectric polarization and nonradiative recombination on the performance of (0001) face GaN/InGaN photovoltaic devices”, Appl. Phys. Lett. vol. 96, no. 5, pp. 051 107-1–051 107-3, Feb. 2010.
[38]H. P. Maruska ,J. J. Tietjen, “The preparation and properties of vapor deposited single-crystal-line GaN”, Appl. Phys. Lett., vol. 15, no. 10, pp. 327–329, Nov. 1969.
[39]K. Kumakura, T. Makimoto, N. Kobayashi, “High hole concentrations in Mg-doped InGaN grown by MOVPE”, J. Cryst. Growth, vol. 221, no. 1–4, pp. 267–270, Dec. 2000.
[40]E. Matioli, C.J. Neufeld, M. Iza, S. C. Cruz, A.A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U.Mishra, S. Nakamura, J. Speck,C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells”, Appl. Phys. Lett. 98, 021102 (2011)
[41]C. J. Neufeld, N.G. Toledo, S.C. Cruz, M. Iza, S. P. DenBaars, U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap”, Appl. Phys. Lett. 93, 143502 (2008)
[42]J. H. Song , J.H. Oh , J.P. Shim , J.H. Min ,D. S. Lee , T.Y. Seong, “Improved efficiency of InGaN/GaN-based multiple quantum well solar cells by reducing contact resistance”, Superlattices Microstruct, 52 (2012) 299–305.
[43]Y.K. Kuo, Y.A. Chang, H.W. Lin, J.Y. Chang, S.H. Yen, F.M. Chen, Y.H. Chen, “Advantages of InGaN Solar Cells With p-Doped and High-Al-Content Superlattice AlGaN Barriers”, IEEE Photon. Technol. Lett. Vol. 25, No. 1 85-87(2013)
[44] Y.J. Lee, M.H. Lee, C.M. Cheng, C.H. Yang, “Enhanced conversion efficiency of InGaN multiple quantum well solar cells grown on a patterned sapphire substrate”, Appl. Phys. Lett. 98, 263504 (2011).
[45]C. L. Chao, C. H. Chiu, Y. J. Lee, H. C. Kuo, P.C Liu, J.D.Tsay,S. J. Cheng, “Freestanding high quality GaN substrate by associated GaN nanorods self-separated hydride vapor-phase epitaxy”, Appl. Phys. Lett. 95, 051905(2009).
[46]H. P. T. Nguyen, Y.-L. Chang, I. Shih, Z. Mi, “InN p-i-n nanowire solar cells on Si”, IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 4 (2011) 1062–1069.
指導教授 賴昆佑(Kun-yu Lai) 審核日期 2013-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明