博碩士論文 100227001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:18.207.240.35
姓名 陳香瑜( Hsiang-Yu Chen)  查詢紙本館藏   畢業系所 認知與神經科學研究所
論文名稱
(The behavioral and neural correlates of orthographic lexicon and orthographic buffer in Chinese writing)
相關論文
★ The influence of experience on the SNARC effect -the mapping between sequential information and spatial representation★ 中文名詞動詞的具體效果的神經相關活動
★ 字形和語意對短期記憶的影響: 從行為及腦造影實驗而來的證據★ 中文字音與字形相似度對語言短期記憶之影響
★ 非語音訊息對中英雙語使用者的語言短期記憶的貢獻★ 中文短期記憶之字形表徵研究
★ The temporal dynamics of the code-switching between alphabetic and logographic languages in unbalancedChinese-English bilinguals★ The acquisition of Chinese literacy as a second language correlates with statistical learning of implicit transitional probability
★ 以行為及腦造影證據探討英文字音及字形相似效果對中英雙語使用者之短期記憶的影響★ EXPLORATION OF THE NEURAL CORRELATES OF SYNTACTIC PROCESSING IN CHINESE USING FUNCTIONAL MAGNETIC RESONANCE IMAGING AND EVENT-RELATED POTENTIALS
★ 視知覺相關能力以及統計學習能力對中文識字學習的影響:來自以中文為母語或外語學習者的證據★ Correlation of statistical learning of different implicit transitional probabilities with Chinese literacy acquisition in non-native adult learners
★ The Characteristics and Neurophysiological Correlates of Componential Visual Statistical Learning★ 金錢酬賞之來源與其分配對公平性感知的影響
★ 對不同感官類型與相鄰性、非相鄰性規則之統計學習能力的個體差異
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 過去以拼音文字為刺激材料的寫字研究中,發現字形詞彙系統(orthographic lexicon)與字形緩衝區(graphemic buffer)分別在功能與神經機制上有雙重分離的現象。舉例來說,左側梭狀回(left fusiform gyrus)以及左側額中回與額下回的交接處(left inferior frontal junction)會受到字頻的高低而影響腦部活化程度,此腦區被認為負責字形詞彙系統的處理;另一方面,左側額上溝(left superior frontal sulcus)與左側頂上小葉(left superior parietal lobule)會受到字母長度的長短而影響腦部活化程度,這些腦區被認為負責字形緩衝儲存庫的處理。然而,以非拼音文字為刺激材料的寫字研究來說,對於字形詞彙系統與字形緩衝區是否有雙重分離的現象卻未進行詳盡地探討。因此,本研究目的在於操弄中文刺激材料中不同的語言變項(即字頻與筆畫數)來探討字形詞彙系統與字形緩衝區是否在功能上有分離現象,並進一步找出與這兩個系統各自相關的負責腦區。本研究實驗一在兩個寫字作業(抄寫與聽寫)以及兩個字詞辨識作業(視覺字詞辨識與聽覺字詞辨識)中操弄中文字的字頻與筆畫數,並以受試者對於刺激字的反應時間為實驗結果的指標,結果顯示在聽寫作業中的字頻效果顯著大於在聽覺字詞辨識作業中的字頻效果,此效果反映聽寫需要更多的字形詞彙系統的參與;然而,筆畫效果只存在於寫字作業,此效果反映寫字作業比字詞辨識作業多了字形緩衝區的處理。由實驗一可發現字形詞彙系統的處理會受到中文字字頻的影響,而字形緩衝區的處理會受到中文字筆畫數的影響,因此我們運用這兩個語言變項分別和兩個字形系統之處理相關的特性,在實驗二的想像寫字作業以及中文字辨識作業中操弄字頻與筆畫數,並透過功能性核磁共振造影技術進一步找出相對應腦區。結果顯示受試者在進行想像寫字作業與中文字辨識作業過程中,低頻字比起高頻字在左側梭狀回引發更高活化程度,反映此腦區負責中文字形表徵的處理,即字形詞彙系統的處理;另一方面,受試者在進行想像寫字作業過程中,多筆畫字比起少筆畫字在左側額中回(left middle frontal gyrus)與左側角回(left angular gyrus)引發更高活化程度,反映這些腦區在中文字書寫過程當中負責連續性的筆畫提取,即字形緩衝區的處理。本研究藉由行為與大腦反應的實徵證據,呈現出中文字書寫在字形詞彙系統與字形緩衝區的功能與解剖腦區上呈現雙重分離的現象。
摘要(英) Previous literature on writing has demonstrated a double dissociation of the underlying functional and neuronal mechanisms between the orthographic lexicon and the graphemic buffer in alphabetic languages. Specifically, the frequency of to-be-writtten stimuli correlated with the processing of the orthographic lexicon situated in the left fusiform gyrus and left inferior frontal junction, while the letter length of the to-be-written stimuli correlated with the processing of the graphemic buffer situated in the left superior frontal sulcus and left superior parietal lobule. Such dissociation has not been explicitly explored in non-alphabetic languages. In the present study, we investigated the functional dissociation between the orthographic lexicon and buffer in Chinese writing by identifying the distinct factors that affect these components selectively. We also investigated the anatomical dissociation between these two processes by identifying the separate brain regions that are associated with these components selectively. In Experiment 1, two linguistic factors, namely, the frequency and the stroke number of characters, were manipulated in two writing tasks: copy and dictation, as well as in two character recognition tasks: visual and auditory lexical decision. The effects of character frequency and stroke number on the durations from the onset of the stimuli till participants started to make responses (RTs) were compared among these tasks. We found that the frequency effect on RTs in the dictation task was stronger than that in the auditory lexical decision task, which suggested that the frequency effect in the dictation task reflected the involvement of the orthographic lexicon in addition to that of the phonological lexicon. The stroke number effect on RTs was significant and equivalent in the dictation and copy task, which suggested the involvement of the orthographic buffer in these two tasks. These findings confirmed that the orthographic lexicon and buffer was selectively sensitive to the manipulation of character frequency and stroke number, respectively. In Experiment 2, participants performed a mental writing task and a recognition task in which the frequency and the stroke number of Chinese characters were manipulated. Their brain responses were simultaneously recorded by functional magnetic resonance imaging (fMRI). It was found that characters with low frequency were associated with higher activation in the left fusiform gyrus than characters with high frequency across the mental writing and the character recognition tasks, which suggested this region to be the locus of the orthographic lexicon that represents the knowledge of character forms. It was also found that the stroke number correlated with the activations in the left middle frontal gyrus and left angular gyrus only in the mental writing task, which suggested these regions to be the loci of the orthographic buffer that represents the serial stroke selection in written production. The results from the two experiments in the present study revealed the functional and anatomical dissociation between the orthographic lexicon and buffer in writing Chinese characters.
關鍵字(中) ★ 中文寫字
★ 字形詞彙系統
★ 字形緩衝區
★ 字頻效果
★ 筆畫效果
★ 功能性磁振造影
關鍵字(英) ★ writing
★ Chinese
★ orthographic lexicon
★ orthographic buffer
★ frequency effect
★ stroke number effect
★ fMRI
論文目次 Chinese Abstract iv
English Abstract i
Acknowledgement iii
Table of Contents v
List of figures ix
List of tables x
1 Introduction 1
1.1 The models of writing behaviors 1
1.1.1 Central processes 3
1.1.2 Peripheral processes 6
1.2 Functional and neuronal dissociation between the orthographic lexicon and the graphemic buffer in the literature of alphabetic languages 7
1.2.1 Evidence from neuropsychological studies 7
1.2.2 Evidence from neuroimaging studies 9
1.3 Writing studies of logographic languages 12
1.3.1 The processes involved in logographic writing 12
1.3.2 The brain regions correlating with logographic writing 14
1.4 The current study 16
2 Experiment 1: Effects of character frequency and stroke number in writing Chinese characters 18
2.1 Method 19
2.1.1 Participants 19
2.1.2 Materials 20
2.1.3 Apparatus 22
2.1.4 Procedure 23
2.2 Results and discussion 28
2.2.1 Dictation task 28
2.2.2 Copy task 30
2.2.3 Visual LDT 32
2.2.4 Auditory LDT 33
2.2.5 Visual LDT versus the copy task 35
2.2.6 Auditory LDT versus the dictation task 36
3 Experiment 2: An fMRI investigation of the distribution of sensitivity to frequency and stroke number in Chinese writing 38
3.1 Methods 38
3.1.1 Participants 38
3.1.2 Materials and design 38
3.1.3 Apparatus 40
3.1.4 Procedure 40
3.2 Data acquisition 43
3.3 Data processing 44
3.3.1 Imaging preprocessing 44
3.3.2 The 1st level GLM modeling and the 2nd level contrasts 45
3.3.3 ROI analyses 47
3.4 Results 48
3.4.1 Behavioral results 48
3.4.2 Imaging results 50
3.5 Discussion 62
3.5.1 The brain regions associated with the processing of the orthographic lexicon 62
3.5.2 The brain regions associated with the processing of the orthographic buffer 65
4 General Discussion 68
4.1 A summary of the results in the present study 68
4.1.1 The functional dissociation between the processing of the orthographic lexicon and the orthographic buffer 68
4.1.2 The neural network underlying Chinese writing 69
4.1.3 The brain regions corresponding to the orthographic lexicon 70
4.1.4 The brain regions corresponding to the orthographic buffer 71
4.2 Future explorations of the orthographic lexicon and the orthographic buffer 72
4.2.1 The orthographic input and output lexicons 72
4.2.2 The basic functional unit of the orthographic buffer 74
4.3 The limitations of the current writing model 75
4.4 Conclusion 76
Reference 77
Appendix 95
參考文獻 Alexander, M. P., Fischer, R. S., & Friedman, R. (1992). Lesion localization in apractic agraphia. Archives of neurology, 49(3), 246–51. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1536626
Badecker, W., Hillis, A., & Caramazza, A. (1990). Lexical morphology and its role in the writing process: evidence from a case of acquired dysgraphia. Cognition, 35(3), 205–43. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2364652
Beauvois, M. F., & Derouesne, J. (1981). Lexical or orthographic agraphia. Brain?: a journal of neurology, 104(Pt 1), 21–49. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7470843
Beeson, P. M., & Henry, M. L. (2008). Comprehension and production of written words. In R. Chapey (Ed.), Language intervention strategies in aphasia and related neurogenic communication disorders (pp. 654–688). Baltimore, MD: Lippincott Williams & Wilkins Press.
Beeson, P., Rapcsak, S., Plante, E., Chargualaf, J., Chung, A., Johnson, S., & Trouard, T. (2003). The neural substrates of writing: A functional magnetic resonance imaging study. Aphasiology, 17(6-7), 647–665. doi:10.1080/02687030344000067
Behrmann, M., Nelson, J., & Sekuler, E. . (1998). Visual complexity in letter-by-letter reading: Pure alexia is not pure. Neuropsychologia, 36(11), 1115–1132. doi:10.1016/S0028-3932(98)00005-0
Belger, a, Puce, a, Krystal, J. H., Gore, J. C., Goldman-Rakic, P., & McCarthy, G. (1998). Dissociation of mnemonic and perceptual processes during spatial and nonspatial working memory using fMRI. Human brain mapping, 6(1), 14–32. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9673660
Binder, J. R., McKiernan, K. a, Parsons, M. E., Westbury, C. F., Possing, E. T., Kaufman, J. N., & Buchanan, L. (2003). Neural correlates of lexical access during visual word recognition. Journal of cognitive neuroscience, 15(3), 372–93. doi:10.1162/089892903321593108
Booth, J. R., Burman, D. D., Meyer, J. R., Lei, Z., Choy, J., Gitelman, D. R., … Mesulam, M. M. (2003). Modality-specific and -independent developmental differences in the neural substrate for lexical processing. Journal of Neurolinguistics, 16(4-5), 383–405. doi:10.1016/S0911-6044(03)00019-8
Burt, J. S., & Tate, H. (2002). Does a Reading Lexicon Provide Orthographic Representations for Spelling? Journal of Memory and Language, 46(3), 518–543. doi:10.1006/jmla.2001.2818
Caramazza, a, Miceli, G., Villa, G., & Romani, C. (1987). The role of the Graphemic Buffer in spelling: evidence from a case of acquired dysgraphia. Cognition, 26(1), 59–85. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/3608396
Caramazza, A. (1988). Some aspects of language processing revealed through the analysis of acquired aphasia: the lexical system. Annual review of neuroscience, 11, 395–421. doi:10.1146/annurev.ne.11.030188.002143
Chan, M. J. (2011). Brain Correlates on Chinese writing?: An fMRI study (Master thesis). Chang Gung University, Taoyuan, Taiwan.
Chen, Y. (1996). What are the functional orthographic units in Chinese word recognition: The stroke or the stroke pattern? The Quarterly Journal of Experimental Psychology: …, 49(4), 1024–1043. doi:10.1080/713755668
Cohen, L., Dehaene, S., Naccache, L., Lehericy, S., Dehaene-Lambertz, G., Henaff, M. A., & Michel, F. (2000). The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain?: a journal of neurology, 123 ( Pt 2, 291–307. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10648437
Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. (2001). DRC: a dual route cascaded model of visual word recognition and reading aloud. Psychological review, 108(1), 204–56. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11212628
Crary, M. A., & Heilman, K. M. (1988). Letter imagery deficits in a case of pure apraxic agraphia. Brain and language, 34(1), 147–56. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/3382929
Dehaene, S., & Cohen, L. (2011). The unique role of the visual word form area in reading. Trends in Cognitive Sciences, 15(6), 254–262. doi:10.1016/j.tics.2011.04.003
Dehaene, S., Pegado, F., Braga, L. W., Ventura, P., Nunes Filho, G., Jobert, A., … Cohen, L. (2010). How learning to read changes the cortical networks for vision and language. Science (New York, N.Y.), 330(6009), 1359–64. doi:10.1126/science.1194140
Ellis, A. W. (1982). Spelling and writing (and reading and speaking). In A. W. Eillis (Ed.), Normality and pathology in cognitive functions (pp. 113–146). New York, NY: Academic Press.
Fiebach, C. J., Friederici, A. D., Muller, K., & von Cramon, D. Y. (2002). fMRI evidence for dual routes to the mental lexicon in visual word recognition. Journal of cognitive neuroscience, 14(1), 11–23. doi:10.1162/089892902317205285
Gazzaniga, M., Ivry, R. B., Mangun, G. R., & Steven, M. S. (2008). Cognitive Neuroscience: The Biology of the Mind (pp. 388–444). New York, NY: W. W. Norton & Company.
Grabner, G., Janke, A. L., Budge, M. M., Smith, D., Pruessner, J., & Collins, D. L. (2006). Symmetric atlasing and model based segmentation: an application to the hippocampus in older adults. Medical image computing and computer-assisted intervention?: MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention, 9(Pt 2), 58–66. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17354756
Grande, M., Meffert, E., Huber, W., Amunts, K., & Heim, S. (2011). Word frequency effects in the left IFG in dyslexic and normally reading children during picture naming and reading. NeuroImage, 57(3), 1212–20. doi:10.1016/j.neuroimage.2011.05.033
Han, Z., Zhang, Y., Shu, H., & Bi, Y. (2007). The orthographic buffer in writing Chinese characters: evidence from a dysgraphic patient. Cognitive neuropsychology, 24(4), 431–50. doi:10.1080/02643290701381853
Harrington, G. S., Farias, D., Davis, C. H., & Buonocore, M. H. (2007). Comparison of the neural basis for imagined writing and drawing. Human brain mapping, 28(5), 450–9. doi:10.1002/hbm.20286
Hillis, a E., & Caramazza, a. (1991). Mechanisms for accessing lexical representations for output: evidence from a category-specific semantic deficit. Brain and language, 40(1), 106–44. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2009445
Hillis, a E., Rapp, B. C., & Caramazza, a. (1999). When a rose is a rose in speech but a tulip in writing. Cortex; a journal devoted to the study of the nervous system and behavior, 35(3), 337–56. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10440073
Hillis, A. E., & Caramazza, A. (1989). The Graphemic Buffer and attentional mechanisms. Brain and Language, 36(2), 208–235. doi:10.1016/0093-934X(89)90062-X
Hillis, A. E., Kane, A., Tuffiash, E., Beauchamp, N. J., Barker, P. B., Jacobs, M. a., & Wityk, R. J. (2002). Neural substrates of the cognitive processes underlying spelling: Evidence from MR diffusion and perfusion imaging. Aphasiology, 16(4-6), 425–438. doi:10.1080/02687030244000248
Iragui, V. J., & Kritchevsky, M. (1991). Alexia without agraphia or hemianopia in parietal infarction. Journal of neurology, neurosurgery, and psychiatry, 54(9), 841–2. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1014530&tool=pmcentrez&rendertype=abstract
Katanoda, K., Yoshikawa, K., & Sugishita, M. (2001). A functional MRI study on the neural substrates for writing. Human Brain Mapping, 13(1), 34–42. doi:10.1002/hbm.1023
Katz, R. B. (1991). Limited retention of information in the graphemic buffer. Cortex; a journal devoted to the study of the nervous system and behavior, 27(1), 111–9. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2055037
Kronbichler, M., Hutzler, F., Wimmer, H., Mair, A., Staffen, W., & Ladurner, G. (2004). The visual word form area and the frequency with which words are encountered: evidence from a parametric fMRI study. NeuroImage, 21(3), 946–53. doi:10.1016/j.neuroimage.2003.10.021
Kuo, W., Yeh, T., Lee, C., Wu, Y., Chou, C., Ho, L.-T., … Hsieh, J.-C. (2003). Frequency effects of Chinese character processing in the brain: an event-related fMRI study. NeuroImage, 18(3), 720–730. doi:10.1016/S1053-8119(03)00015-6
Kuo, W.-J., Yeh, T.-C., Lee, J.-R., Chen, L.-F., Lee, P.-L., Chen, S.-S., … Hsieh, J.-C. (2004). Orthographic and phonological processing of Chinese characters: an fMRI study. NeuroImage, 21(4), 1721–31. doi:10.1016/j.neuroimage.2003.12.007
Lam, S. S. T., Au, R. K. C., Leung, H. W. H., & Li-Tsang, C. W. P. (2011). Chinese handwriting performance of primary school children with dyslexia. Research in developmental disabilities, 32(5), 1745–56. doi:10.1016/j.ridd.2011.03.001
Law, N., Ki, W. W., Chung, A. L. S., Ko, P. Y., & Lam, H. C. (1998). Children ’ s stroke sequence errors in writing Chinese characters, 267–292.
Law, S. P., & Or, B. (2001). A case study of acquired dyslexia and dysgraphia in cantonese: Evidence for nonsemantic pathways for reading and writing chinese. Cognitive Neuropsychology, 18(8), 729–748. doi:10.1080/02643290143000024
Law, S.-P., Yeung, O., Wong, W., & Chiu, K. M. Y. (2005). Processing of semantic radicals in writing Chinese characters: Data from a Chinese dysgraphic patient. Cognitive Neuropsychology, 22(7), 0885–903. Retrieved from http://www.tandfonline.com/doi/abs/10.1080/02643290442000392
Lee, C., Tsai, J., Kuo, W., Yeh, T., Wu, Y., Ho, L., … Hsieh, J.-C. (2004). Neuronal correlates of consistency and frequency effects on Chinese character naming: an event-related fMRI study. NeuroImage, 23(4), 1235–45. doi:10.1016/j.neuroimage.2004.07.064
Lee, C., Tsai, J., Su, E. C., Tzeng, O. J. L., & Hung, D. L. (2005). Consistency , Regularity , and Frequency Effects in Naming Chinese Characters. Language and linguistics, 6(1), 75–107.
Leung, H.-C., Seelig, D., & Gore, J. C. (2004). The effect of memory load on cortical activity in the spatial working memory circuit. Cognitive, affective & behavioral neuroscience, 4(4), 553–63. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15849897
Liu, Y., Shu, H., & Li, P. (2007). Word naming and psycholinguistic norms: Chinese. Behavior research methods, 39(2), 192–8. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17695344
Martin, A., Haxby, J. V, Lalonde, F. M., Wiggs, C. L., & Ungerleider, L. G. (1995). Discrete cortical regions associated with knowledge of color and knowledge of action. Science (New York, N.Y.), 270(5233), 102–5. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7569934
Nakamura, K., Honda, M., Hirano, S., Oga, T., Sawamoto, N., Hanakawa, T., … Shibasaki, H. (2002). Modulation of the visual word retrieval system in writing: a functional MRI study on the Japanese orthographies. Journal of cognitive neuroscience, 14(1), 104–15. doi:10.1162/089892902317205366
Nakamura, K., Honda, M., Okada, T., Hanakawa, T., Toma, K., Fukuyama, H., … Shibasaki, H. (2000). Participation of the left posterior inferior temporal cortex in writing and mental recall of kanji orthography: A functional MRI study. Brain?: a journal of neurology, 123 ( Pt 5, 954–67. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10775540
Nakamura, K., Kuo, W., Pegado, F., Cohen, L., Tzeng, O. J. L., & Dehaene, S. (2012). Universal brain systems for recognizing word shapes and handwriting gestures during reading. Proceedings of the National Academy of Sciences of the United States of America, 109(50), 20762–7. doi:10.1073/pnas.1217749109
Nelson, C. a., Monk, C. S., Lin, J., Carver, L. J., Thomas, K. M., & Truwit, C. L. (2000). Functional neuroanatomy of spatial working memory in children. Developmental Psychology, 36(1), 109–116. doi:10.1037//0012-1649.36.1.109
Otsuki, M., Soma, Y., Arai, T., Otsuka, A., & Tsuji, S. (1999). Pure apraxic agraphia with abnormal writing stroke sequences: report of a Japanese patient with a left superior parietal haemorrhage. Journal of neurology, neurosurgery, and psychiatry, 66(2), 233–7. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1736213&tool=pmcentrez&rendertype=abstract
Petrova, A., Gaskell, M. G., & Ferrand, L. (2011). Orthographic Consistency and Word-Frequency Effects in Auditory Word Recognition: New Evidence from Lexical Decision and Rime Detection. Frontiers in Psychology, 2(October), 1–11. doi:10.3389/fpsyg.2011.00263
Prabhakaran, R., Blumstein, S. E., Myers, E. B., Hutchison, E., & Britton, B. (2006). An event-related fMRI investigation of phonological-lexical competition. Neuropsychologia, 44(12), 2209–21. doi:10.1016/j.neuropsychologia.2006.05.025
Price, C J. (2000). The anatomy of language: contributions from functional neuroimaging. Journal of anatomy, 197 Pt 3, 335–59. Retrieved from http://onlinelibrary.wiley.com/doi/10.1046/j.1469-7580.2000.19730335.x/full
Price, Cathy J. (2010). The anatomy of language: a review of 100 fMRI studies published in 2009. Annals of the New York Academy of Sciences, 1191, 62–88. doi:10.1111/j.1749-6632.2010.05444.x
Price, Cathy J. (2012). A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. NeuroImage, 62(2), 816–47. doi:10.1016/j.neuroimage.2012.04.062
Purcell, J. J., Napoliello, E. M., & Eden, G. F. (2011). A combined fMRI study of typed spelling and reading. NeuroImage, 55(2), 750–62. doi:10.1016/j.neuroimage.2010.11.042
Purcell, J. J., Turkeltaub, P. E., Eden, G. F., & Rapp, B. (2011). Examining the central and peripheral processes of written word production through meta-analysis. Frontiers in psychology, 2(October), 239. doi:10.3389/fpsyg.2011.00239
Purves, D., Brannon, E. M., Cabeza, R., Huettel, S. A., LaBar, K. S., Platt, M. L., & Woldorff, M. G. (2008). Working memory. In Principles of cognitive neuroscience (pp. 405–429). Sunderland, MA: Sinauer associates, Inc.
Raabe, M., Fischer, V., Bernhardt, D., & Greenlee, M. W. (2013). Neural correlates of spatial working memory load in a delayed match-to-sample saccade task. NeuroImage, 71, 84–91. doi:10.1016/j.neuroimage.2013.01.002
Rapcsak, S Z, Rubens, a B., & Laguna, J. F. (1990). From letters to words: procedures for word recognition in letter-by-letter reading. Brain and language, 38(4), 504–14. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2375979
Rapcsak, S. Z., & Beeson, P. M. (2000). Agraphia. In S. E. Nadeau, L. J. G. Rothi, & B. Crosson (Eds.), Aphasia and language: Theory to practice (pp. 184–220). New York, NY: The Guilford Press.
Rapcsak, Steven Z, & Beeson, P. M. (2002). Neuroanatomical correlates of spelling and writing. In A. E. Hillis (Ed.), The handbook of adult language disorders (pp. 71–100). New York, NY: Psychology Press.
Rapcsak, Steven Z, & Beeson, P. M. (2004). The role of left posterior inferior temporal cortex in spelling. Neurology, 62(12), 2221–9. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15210886
Rapcsak, Steven Z, Henry, M. L., Teague, S. L., Carnahan, S. D., & Beeson, P. M. (2007). Do dual-route models accurately predict reading and spelling performance in individuals with acquired alexia and agraphia? Neuropsychologia, 45(11), 2519–24. doi:10.1016/j.neuropsychologia.2007.03.019
Rapp, B, & Caramazza, a. (1997). From graphemes to abstract letter shapes: levels of representation in written spelling. Journal of experimental psychology. Human perception and performance, 23(4), 1130–52. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9269731
Rapp, Brenda. (2002). Uncovering the cognitive architecture of spelling. In Argye Elizabeth Hillis (Ed.), The handbook of adult language disorders (pp. 47–69). New York, NY: Psychology Press.
Rapp, Brenda, & Dufor, O. (2011a). The neurotopography of written word production: an fMRI investigation of the distribution of sensitivity to length and frequency. Journal of cognitive neuroscience, 23(12), 4067–81. doi:10.1162/jocn_a_00109
Rapp, Brenda, & Dufor, O. (2011b). The neurotopography of written word production: an fMRI investigation of the distribution of sensitivity to length and frequency. Journal of cognitive neuroscience, 23(12), 4067–81. doi:10.1162/jocn_a_00109
Rapp, Brenda, & Lipka, K. (2011). The literate brain: the relationship between spelling and reading. Journal of cognitive neuroscience, 23(5), 1180–97. doi:10.1162/jocn.2010.21507
Rektor, I., Rektorova, I., Mikl, M., Brazdil, M., & Krupa, P. (2006). An event-related fMRI study of self-paced alphabetically ordered writing of single letters. Experimental brain research. Experimentelle Hirnforschung. Experimentation cerebrale, 173(1), 79–85. doi:10.1007/s00221-006-0369-y
Roeltgen, D P, & Heilman, K. M. (1984). Lexical agraphia. Further support for the two-system hypothesis of linguistic agraphia. Brain?: a journal of neurology, 107 ( Pt 3, 811–27. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6206909
Roeltgen, D. P. (2003). Agraphia. In M. H. Kenneth & V. Edward (Eds.), Clinical neuropsychology (pp. 126–145). New York, NY: Oxford University Press.
Roux, F., Draper, L., Kopke, B., & Demonet, J.-F. (2010). Who actually read Exner? Returning to the source of the frontal “writing centre” hypothesis. Cortex; a journal devoted to the study of the nervous system and behavior, 46(9), 1204–10. doi:10.1016/j.cortex.2010.03.001
Roux, F., Dufor, O., Giussani, C., Wamain, Y., Draper, L., Longcamp, M., & Demonet, J.-F. (2009). The graphemic/motor frontal area Exner’s area revisited. Annals of neurology, 66(4), 537–45. doi:10.1002/ana.21804
Sage, K., & Ellis, A. (2006). Using orthographic neighbours to treat a case of graphemic buffer disorder. Aphasiology, 20(9), 851–870. doi:10.1080/02687030600738945
Sakurai, Y., Matsumura, K., Iwatsubo, T., & Momose, T. (1997). Frontal pure agraphia for kanji or kana: dissociation between morphology and phonology. Neurology, 49(4), 946–52. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9339672
Sakurai, Y., Onuma, Y., & Nakazawa, G. (2007). Parietal dysgraphia: characterization of abnormal writing stroke sequences, character formation and character recall. Behavioural …, 18, 99–114. Retrieved from http://iospress.metapress.com/index/vv8397673qjr5210.pdf
Schweinsburg, A. D., Nagel, B. J., & Tapert, S. F. (2005). fMRI reveals alteration of spatial working memory networks across adolescence. Journal of the International Neuropsychological Society?: JINS, 11(5), 631–44. doi:10.1017/S1355617705050757
Su, Y.-F., & Samuels, S. J. (2009). Developmental changes in character-complexity and word-length effects when reading Chinese script. Reading and Writing, 23(9), 1085–1108. doi:10.1007/s11145-009-9197-3
Sugihara, G., Kaminaga, T., & Sugishita, M. (2006a). Interindividual uniformity and variety of the “Writing center”: a functional MRI study. NeuroImage, 32(4), 1837–49. doi:10.1016/j.neuroimage.2006.05.035
Sugihara, G., Kaminaga, T., & Sugishita, M. (2006b). Interindividual uniformity and variety of the “Writing center”: a functional MRI study. NeuroImage, 32(4), 1837–49. doi:10.1016/j.neuroimage.2006.05.035
Sugishita, M., Takayama, Y., Shiono, T., Yoshikawa, K., & Takahashi, Y. (1996). Functional magnetic resonance imaging (fMRI) during mental writing with phonograms. Neuroreport, 7(12), 1917–21. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8905692
Tainturier, M.-J., & Rapp, B. (2001). The spelling process. In Breda Rapp (Ed.), The handbook of cognitive neuropsychology?: what deficits reveal about the human mind (pp. 263–289). Philadelphia, PA: Psychology Press.
Tan, L. H., Laird, A. R., Li, K., & Fox, P. T. (2005). Neuroanatomical correlates of phonological processing of Chinese characters and alphabetic words: a meta-analysis. Human brain mapping, 25(1), 83–91. doi:10.1002/hbm.20134
Thompson-Schill, S. L., Swick, D., Farah, M. J., D’Esposito, M., Kan, I. P., & Knight, R. T. (1998). Verb generation in patients with focal frontal lesions: A neuropsychological test of neuroimaging findings. Proceedings of the National Academy of Sciences, 95(26), 15855–15860. doi:10.1073/pnas.95.26.15855
Tokunaga, H., Nishikawa, T., Ikejiri, Y., Nakagawa, Y., Yasuno, F., Hashikawa, K., … Takeda, M. (1999). Different neural substrates for Kanji and Kana writing: a PET study. Neuroreport, 10(16), 3315–9. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10599838
Weekes, B. S., Yin, W., Su, I. F., & Chen, M. J. (2006). The cognitive neuropsychology of reading and writing in Chinese. Language and linguistics, 7(3), 595–617.
Yu, H., Gong, L., Qiu, Y., & Zhou, X. (2011). Seeing Chinese characters in action: an fMRI study of the perception of writing sequences. Brain and language, 119(2), 60–7. doi:10.1016/j.bandl.2010.11.007
指導教授 吳嫻(Denise H. Wu) 審核日期 2014-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明