博碩士論文 100227004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.210.28.227
姓名 呂明珊(Ming-shan Lu)  查詢紙本館藏   畢業系所 認知與神經科學研究所
論文名稱
(Roles of the Pre-supplementary Motor Area and Right Inferior Frontal Gyrus in Stimulus Selective Stop-signal task: A Theta Burst Transcranial!Magnetic! Stimulation!Study)
相關論文
★ 時間及空間對注意力暫失的影響 以及其可能的神經生理機制★ 注意力分配及眼球運動準備歷程對於眼動潛伏時間與眼動軌跡的影響
★ 注意力暫失中的數字表徵: 數字距離對注意力暫失的影響★ 利用跨顱磁刺激探討主動式注意力攫取的神經機制
★ 以數學模型及跨顱磁刺激探討注意力分配及眼球運動準備歷程★ 學齡前兒童之視覺注意力發展及電腦化注意力訓練效果之探討
★ 以跨顱磁刺激探討左側下部頂葉以及左側上部頂葉的功能在中文處理中所扮演的角色★ 性侵害犯的衝動行為表現-情緒狀態如何影響性侵害犯的抑制能力?
★ 學齡前階段孩童眼動抑制能力的發展和特性★ 學齡前階段孩童衝突解決和動作反應抑制能力的發展
★ 6歲孩童與成人在數字和具體數量上的自動化處理★ 期望效果之影響與可能的神經機制
★ Attentional reorienting: the dynamic interaction between goal-directed and stimulus-driven attentioinal control★ 前額葉眼動區在視覺搜尋作業上對不同干擾物特徵與顯示時間扮演的角色
★ Investigation of posterior parietal cortex visuospatial control over processing in near and far space using transcranial magnetic stimulation★ Using Transcranial Direct-Current Stimulation to Investigate the Roles of the Dorsal Lateral Prefrontal Cortex and the Temporoparietal Junction in Top-Down and Bottom-Up Conflict Resolution
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 衝動控制主要是將已準備執行的動作進行抑制的能力,當緊急情況發生時,此功能可使我們避免危險。在實驗研究中,停止訊號作業被最為廣泛地使用,並且發展出不同形式以因應不同的關於衝動控制的研究議題。先前研究指出,「前運動輔助區」(pre-supplementary motor area, pre-SMA)和「右側前額葉腦迴」(right inferior frontal gyrus, rIFG)皆與執行此應變能力有關,但對於這兩個腦區分別在衝動控制的角色卻未有一致的結論。本研究旨在探討忽略訊號對於停止訊號作業的影響,並利用跨顱磁刺激建立相關腦區在此神經機制下的因果關係。由於停止訊號出現時,具有突然出現且無法預測的特性,有些研究者認為,停止訊號並不單純是使受試者抑制動作,同時也包含了受試者對於此訊號的注意力攫取歷程。注意力搜尋作業發現rIFG與注意力攫取歷程有關。為了能將注意力攫取從停止訊號中分離出來,研究者在傳統停止訊號作業多增加一個「忽略」訊號,此訊息雖同樣具有不可預測性,但當受試者看到此信號時,被要求要持續地完成正在執行的動作。相關腦造影研究顯示,相對於忽略訊號,pre-SMA對於停止訊號的活化較大,支持pre-SMA確實與衝動控制歷程相關,然而忽略訊號的出現是否只有注意力攫取單一歷程卻受到挑戰。
實驗一目的為檢測停止訊號作業是否會受到忽略訊號影響,比較在傳統停止訊號作業與增加忽略訊號的選擇停止訊號作業間的表現,並對於受試者策略進行分析。結果顯示忽略訊號確實對選擇停止訊號作業有顯著的影響,並不單純是注意力攫取的效果。實驗二以跨顱磁刺激探究當忽略訊號出現時,pre-SMA與rIFG在當中的神經機制。首先,根據實驗一的結果,先將受試者對於忽略訊號的反應時間分為快與慢兩組。先前研究結果發現,反應時間慢可能代表衝動控制不完全,並提出pre-SMA與rIFG皆與其相關。實驗二結果發現,反應時間慢組,當刺激rIFG時能使其反應時間顯著變快,說明rIFG相對於pre-SMA對於衝動控制不完全有主要的影響。而在反應時間快組,則是發現在刺激pre-SMA時,反應時間會顯著變慢。雖然目前相關文獻對於反應時間快組並無大量的探討,且腦造影研究結果則是顯示rIFG在其中的活化,但實驗者推論,當忽略訊號出現而受試者能較快反應時,需要去抑制衝動控制的產生,而此部分則是由pre-SMA負責,因此在電刺激短暫干擾下反會使得反應時間增加。
pre-SMA與rIFG已被發現在功能與結構上是緊密連結的,本研究顯示在衝動控制的神經機制中,並對於不完全抑制的因果關係有初步了解,而未來研究期以在忽略訊號反應快者的神經機制做更深入地研究。
摘要(英) The presupplementary motor area (pre-SMA) and the right inferior frontal gyrus
(rIFG) are critical for successful response inhibition. However, different conclusions
regarding their roles have been made. Since stop signals usually appear abruptly and
infrequently, it has been argued that attentional capture may be involved in the task. To
dissociate inhibition and attentional capture, an “ignore” condition in a stimulus selective
stop-signal task was introduced. Because the ignore signal shares all but one feature with
the stop signal but does not require stopping, performance in the ignore conditions can be
contrasted to that in the stop conditions. However, some argued that the role of the ignore
signal might not be as straightforward as it seems.
The current study aimed to examine how ignore trials may affect the inhibitory
process and the causal relations of pre-SMA and rIFG in implementing such trials by using
theta burst TMS (cTBS). The objective of Experiment 1 was to testify whether “ignore”
trials affect performance by comparing participants’ performances in both simple and
selective stop-signal tasks by strategy classifications. Results showed that ignore trials also
influenced the stop process, indicating that ignore trials may not only represent attentional
capture but also partial inhibition (i.e. response slowing). In Experiment 2, cTBS was
applied over the pre-SMA and rIFG to further examine their roles in partial inhibition in
participants whose ignore RTs were fast and those who were slow. Results showed a
double dissociation between brain regions. cTBS over the rIFG showed a decrease in RT in
the slow ignore RT group, indicating the involvement of rIFG in partial inhibition. On the
other hand, cTBS over the pre-SMA showed an escalated ignore RT, suggesting that the ! iii
pre-SMA might play a role in suppressing inhibitory function in order to respond fast in
ignore trials.
關鍵字(中) ★ 衝動控制
★ Š行為抑制
★ 停止訊號作業
★ 跨顱磁刺激
關鍵字(英) ★ response inhibition
★ inhibitory control
★ stop-signal task
★ pre-SMA
★ rIFG
★ TMS
論文目次 1.#GENERAL#INTRODUCTION#................................................................................................................#1!
1.1 INHIBITORY CONTROL!.......................................................................................................................................!1!
1.2 THE STOP-SIGNAL PARADIGM AND INDEPENDENT HORSE RACE MODEL!..........................................!3!
1.3 SELECTIVE STOPPING!.........................................................................................................................................!7!
2.#NEURAL#SUBSTRATES#OF#RESPONSE#INHIBITION#..................................................................#12!
2.1 NEURAL CIRCUITRY OF INHIBITORY CONTROL!......................................................................................!12!
2.1.1 Medial prefrontal cortex (presupplementary motor area)!..........................................................!13!
2.1.2 Ventral prefrontal cortex (right inferior frontal cortex)!..............................................................!17!
2.2 AN ALTERNATIVE EXPLANATION!...............................................................................................................!20!
2.2.1. The confound of stop-signal paradigm!.............................................................................................!23!
2.2.2. Strategic heterogeneity in the selective stop signal paradigm!.................................................!28!
2.3 RESEARCH PURPOSE!.......................................................................................................................................!33!
3.#EXPERIMENT#1#....................................................................................................................................#36!
3.1 METHOD!..............................................................................................................................................................!37!
3.2 RESULTS!..............................................................................................................................................................!42!
3.2.1 Integral subjects analysis!........................................................................................................................!42!
3.2.2 Strategy group divided analysis!............................................................................................................!44!
3.3 DISCUSSION!.......................................................................................................................................................!56!
4.#EXPERIMENT#2#....................................................................................................................................#59!
4.1 METHOD!..............................................................................................................................................................!60!
4.2 RESULTS!..............................................................................................................................................................!63!
4.3 DISCUSSION!.......................................................................................................................................................!71!
5.#GENERAL#DISCUSSION#......................................................................................................................#75!
5.1 EXPERIMENTAL FINDINGS!.............................................................................................................................!75!
5.2 FUTURE DIRECTIONS AND LIMITATIONS OF RESEARCH!......................................................................!77!
5.3 CONCLUSION!.....................................................................................................................................................!80!
REFERENCES#.............................................................................................................................................#82!
參考文獻 Aron, A. R. (2007). The neural basis of inhibition in cognitive control. The Neuroscientist
a Review Journal Bringing Neurobiology Neurology and Psychiatry, 13(3), 214–228.
doi:10.1177/1073858407299288
Aron, A. R. (2011). From reactive to proactive and selective control: developing a richer
model for stopping inappropriate responses. Biological Psychiatry, 69(12), e55–e68.
doi:10.1016/j.biopsych.2010.07.024
Aron, A. R., Behrens, T. E., Smith, S., Frank, M. J., & Poldrack, R. a. (2007).
Triangulating a cognitive control network using diffusion-weighted magnetic
resonance imaging (MRI) and functional MRI. Journal of Neuroscience, 27(14),
3743–3752. doi:10.1523/JNEUROSCI.0519-07.2007
Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J., & Robbins, T. W. (2003).
Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans.
Nature Neuroscience, 6(2), 115–116. doi:10.1038/nn1003
Aron, A. R., & Poldrack, R. a. (2006). Cortical and subcortical contributions to Stop signal
response inhibition: role of the subthalamic nucleus. Journal of Neuroscience, 26(9),
2424–2433. doi:10.1523/JNEUROSCI.4682-05.2006
Aron, A. R., Robbins, T. W., & Poldrack, R. a. (2004). Inhibition and the right inferior
frontal cortex. Trends in Cognitive Sciences, 8(4), 170–177.
doi:10.1016/j.tics.2004.02.010
Aron, A. R., Robbins, T. W., & Poldrack, R. a. (2014). Inhibition and the right inferior
frontal cortex: one decade on. Trends in Cognitive Sciences, 18(4), 177–185.
doi:10.1016/j.tics.2013.12.003
Aron, A. R., & Verbruggen, F. (2008). Stop the presses! The West Virginia Medical
Journal, 107(1), 4.
Bedard, A.-C., Ickowicz, A., Logan, G. D., Hogg-Johnson, S., Schachar, R., & Tannock, R.
(2003). Selective inhibition in children with attention-deficit hyperactivity disorder
off and on stimulant medication. Journal of Abnormal Child Psychology, 31(3), 315–
27.
Bissett, P. G., & Logan, G. D. (2013). Selective Stopping? Maybe Not. Journal of
Experimental Psychology. General, 9(2), 0–18. doi:10.1037/a0032122
Cai, W., George, J. S., Verbruggen, F., Chambers, C. D., & Aron, a R. (2012). The role of
the right pre-supplementary motor area in stopping action: two studies with
event-related transcranial magnetic stimulation. Journal of Neurophysiology, 108(2),
380–9. doi:10.1152/jn.00132.2012
Chambers, C. D., Bellgrove, M. A., Stokes, M. G., Henderson, T. R., Garavan, H.,
Robertson, I. H., … Mattingley, J. B. (2006). Executive “‘ Brake Failure ’” following
Deactivation of Human Frontal Lobe, Journal of Cognitive Neuroscience, 18(3), 444–
455.
Chambers, C. D., Garavan, H., & Bellgrove, M. a. (2009). Insights into the neural basis of
response inhibition from cognitive and clinical neuroscience. Neuroscience &
Biobehavioral Reviews, 33(5), 631–646. doi:10.1016/j.neubiorev.2008.08.016
Chen, C.-Y., Muggleton, N. G., Juan, C.-H., Tzeng, O. J. L., & Hung, D. L. (2008). Time
pressure leads to inhibitory control deficits in impulsive violent offenders.
Behavioural Brain Research, 187(2), 483–8. doi:10.1016/j.bbr.2007.10.011
Chen, C.-Y., Muggleton, N. G., Tzeng, O. J. L., Hung, D. L., & Juan, C.-H. (2009).
Control of prepotent responses by the superior medial frontal cortex. NeuroImage,
44(2), 537–545. doi:10.1016/j.neuroimage.2008.09.005
Corbetta, M., Kincade, J. M., & Shulman, G. L. (2002). Neural systems for visual orienting
and their relationships to spatial working memory. Journal of Cognitive Neuroscience,
14(3), 508–523.
Coxon, J. P., Stinear, C. M., & Byblow, W. D. (2007). Selective inhibition of movement.
Journal of Neurophysiology, 97(3), 2480–2489. doi:10.1152/jn.01284.2006
De Fockert, J., Rees, G., Frith, C., & Lavie, N. (2004). Neural correlates of attentional
capture in visual search. Journal of Cognitive Neuroscience, 16(5), 751–759.
De Jong, R., Coles, M. G., & Logan, G. D. (1995). Strategies and mechanisms in
nonselective and selective inhibitory motor control. Journal of Experimental
Psychology: Human Perception and Performance, 21(3), 498–511.
Decary, A., & Richer, F. (1995). Pergamon Response selection defieits in frontal
execisions, 33(10), 1243–1253.
Duann, J.-R., Ide, J. S., Luo, X., & Li, C. R. (2009). Functional connectivity delineates
distinct roles of the inferior frontal cortex and presupplementary motor area in stop
signal inhibition. Journal of Neuroscience, 29(32), 10171–10179.
doi:10.1523/JNEUROSCI.1300-09.2009
Floden, D., & Stuss, D. T. (2006). Inhibitory control is slowed in patients with right
superior medial frontal damage. Journal of Cognitive Neuroscience, 18(11), 1843–
1849.
Garavan, H., Ross, T. J., & Stein, E. a. (1999). Right hemispheric dominance of inhibitory
control: an event-related functional MRI study. Proceedings of the National Academy
of Sciences of the United States of America, 96(14), 8301–8306.
Hampshire, A., Chamberlain, S. R., Monti, M. M., Duncan, J., & Owen, A. M. (2010). The
role of the right inferior frontal gyrus: inhibition and attentional control. NeuroImage,
50(3-3), 1313–1319. doi:10.1016/j.neuroimage.2009.12.109
Huang, Y.-Z., Edwards, M. J., Rounis, E., Bhatia, K. P., & Rothwell, J. C. (2005). Theta
burst stimulation of the human motor cortex. Neuron, 45(2), 201–6.
doi:10.1016/j.neuron.2004.12.033
Hubl, D., Nyffeler, T., Wurtz, P., Chaves, S., Pflugshaupt, T., Lüthi, M., … Müri, R. M.
(2008). Time course of blood oxygenation level-dependent signal response after theta ! 85
burst transcranial magnetic stimulation of the frontal eye field. Neuroscience, 151(3),
921–8. doi:10.1016/j.neuroscience.2007.10.049
Isoda, M., & Hikosaka, O. (2007). Switching from automatic to controlled action by
monkey medial frontal cortex. Nature Neuroscience, 10(2), 240–248.
doi:10.1038/nn1830
Jahfari, S., Stinear, C. M., Claffey, M., Verbruggen, F., & Aron, A. R. (2010). Responding
with restraint: what are the neurocognitive mechanisms? Journal of Cognitive
Neuroscience, 22(7), 1479–1492.
Ko, Y.-T., & Miller, J. (2011). Nonselective motor-level changes associated with selective
response inhibition: evidence from response force measurements. Psychonomic
Bulletin Review, 18(4), 813–819. doi:10.3758/s13423-011-0090-0
Levitt, H. (1971). Transformed up-down methods in psychoacoustics. Journal of the
Acoustical Society of America, 49, 467–477.
Li, C. R., Huang, C., Constable, R. T., & Sinha, R. (2006). Imaging response inhibition in
a stop-signal task: neural correlates independent of signal monitoring and
post-response processing. Journal of Neuroscience, 26(1), 186–192.
doi:10.1523/JNEUROSCI.3741-05.2006
Li, C. R., Huang, C., Yan, P., Bhagwagar, Z., Milivojevic, V., & Sinha, R. (2009). Neural
Correlates of Impulse Control During Stop Signal Inhibition in Cocaine-Dependent
Men. Neuropsychopharmacology, 33(8), 1798–1806.
doi:10.1038/sj.npp.1301568.Neural
Li, C. R., Ph, D., Chang, H., Hsu, Y., Wang, H., & Ko, N. (2006). Motor Response
Inhibition in Children With Tourette’s Disorder, Journal of Neuropsychiatry and
Clinical Neurosciences, 13, 417–419.
Loftus, G. R., & Masson, M. E. (1994). Using confidence intervals in within-subject
designs. Psychonomic Bulletin & Review, 1(4), 476–90. doi:10.3758/BF03210951
Logan, G. D., Schachar, R. J., & Tannock, R. (1997). Impulsivity and inhibitory control,
Psychological Sicence, 8(1), 60–65.
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function.
Annual Review of Neuroscience, 24, 167–202. doi:10.1146/annurev.neuro.24.1.167
Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7(3), 134–140.
doi:10.1016/S1364-6613(03)00028-7
Mostofsky, S. H., & Simmonds, D. J. (2008). Response inhibition and response selection:
two sides of the same coin. Journal of Cognitive Neuroscience, 20(5), 751–761.
Neubert, F., Mars, R. B., & Rushworth, M. F. S. (2013). Is there an inferior frontal cortical
network for cognitive control and inhibition? In Principles of frontal lobe function
(2nd ed., pp. 332–352).
Ridderinkhof, K. R., Ullsperger, M., Crone, E. a, & Nieuwenhuis, S. (2004). The role of
the medial frontal cortex in cognitive control. Science, 306(5695), 443–447.
doi:10.1126/science.1100301
Rubia, K., Smith, A. B., Brammer, M. J., & Taylor, E. (2003). Right inferior prefrontal
cortex mediates response inhibition while mesial prefrontal cortex is responsible for
error detection. NeuroImage, 20(1), 351–358. doi:10.1016/S1053-8119(03)00275-1
Schachar, R. J., Tannock, R., & Logan, G. (1993). Inhibitory control, impulsiveness, and
attention deficit hyperactivity disorder, Clinical Psychology Review, 13, 721–739.
Schachar, R., Tannock, R., Marriott, M., & Logan, G. (1995). Deficient Inhibitory Control
in Attention Deficit Hyperactivity Disorder, Journal of Abnormal Child Psychology,
23(4), 411–437.
Sharp, D. J., Bonnelle, V., De Boissezon, X., Beckmann, C. F., James, S. G., Patel, M. C.,
& Mehta, M. a. (2010). Distinct frontal systems for response inhibition, attentional
capture, and error processing. Proceedings of the National Academy of Sciences of the
United States of America, 107(13), 6106–6111. doi:10.1073/pnas.1000175107
Swann, N. C., Cai, W., Conner, C. R., Pieters, T. a, Claffey, M. P., George, J. S., …
Tandon, N. (2012). Roles for the pre-supplementary motor area and the right inferior
frontal gyrus in stopping action: electrophysiological responses and functional and
structural connectivity. NeuroImage, 59(3), 2860–70.
doi:10.1016/j.neuroimage.2011.09.049
Van de Laar, M. C., van den Wildenberg, W. P. M., van Boxtel, G. J. M., & van der Molen,
M. W. (2010). Processing of global and selective stop signals: application of Donders’
subtraction method to stop-signal task performance. Experimental Psychology, 57(2),
149–59. doi:10.1027/1618-3169/a000019
Van de Laar, M. C., van den Wildenberg, W. P. M., van Boxtel, G. J. M., & van der Molen,
M. W. (2011a). Lifespan changes in global and selective stopping and performance
adjustments. Frontiers in Psychology, 2(December), 357.
doi:10.3389/fpsyg.2011.00357
Van de Laar, M. C., van den Wildenberg, W. P. M., van Boxtel, G. J. M., & van der Molen,
M. W. (2011b). Lifespan changes in global and selective stopping and performance
adjustments. Frontiers in Psychology, 2(December), 357.
doi:10.3389/fpsyg.2011.00357
Van Holst, R. J., van Holstein, M., van den Brink, W., Veltman, D. J., & Goudriaan, A. E.
(2012). Response inhibition during cue reactivity in problem gamblers: an fMRI study.
PloS One, 7(3), e30909. doi:10.1371/journal.pone.0030909
Verbruggen, F., Schneider, D. W., & Logan, G. D. (2008). How to stop and change a
response: the role of goal activation in multitasking. Journal of Experimental
Psychology: Human Perception and Performance, 34(5), 1212–1228.
doi:10.1037/0096-1523.34.5.1212
指導教授 阮啟弘(Chi-Hung Juan) 審核日期 2014-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明