博碩士論文 100227006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:100.26.196.222
姓名 王靜秀(Ching-Hsiu Wang)  查詢紙本館藏   畢業系所 認知與神經科學研究所
論文名稱 6歲孩童與成人在數字和具體數量上的自動化處理
(Automatic processing of symbolic and non-symbolic number magnitude in 6-year-olds and adults)
相關論文
★ 時間及空間對注意力暫失的影響 以及其可能的神經生理機制★ 注意力分配及眼球運動準備歷程對於眼動潛伏時間與眼動軌跡的影響
★ 注意力暫失中的數字表徵: 數字距離對注意力暫失的影響★ 利用跨顱磁刺激探討主動式注意力攫取的神經機制
★ 以數學模型及跨顱磁刺激探討注意力分配及眼球運動準備歷程★ 學齡前兒童之視覺注意力發展及電腦化注意力訓練效果之探討
★ 以跨顱磁刺激探討左側下部頂葉以及左側上部頂葉的功能在中文處理中所扮演的角色★ 性侵害犯的衝動行為表現-情緒狀態如何影響性侵害犯的抑制能力?
★ 學齡前階段孩童眼動抑制能力的發展和特性★ 學齡前階段孩童衝突解決和動作反應抑制能力的發展
★ 期望效果之影響與可能的神經機制★ Attentional reorienting: the dynamic interaction between goal-directed and stimulus-driven attentioinal control
★ 前額葉眼動區在視覺搜尋作業上對不同干擾物特徵與顯示時間扮演的角色★ Roles of the Pre-supplementary Motor Area and Right Inferior Frontal Gyrus in Stimulus Selective Stop-signal task: A Theta Burst Transcranial!Magnetic! Stimulation!Study
★ Investigation of posterior parietal cortex visuospatial control over processing in near and far space using transcranial magnetic stimulation★ Using Transcranial Direct-Current Stimulation to Investigate the Roles of the Dorsal Lateral Prefrontal Cortex and the Temporoparietal Junction in Top-Down and Bottom-Up Conflict Resolution
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 數量概念與數字一直是未來數學學習的基礎,然而孩童對於數量的認知概念有階段性的發展,在過去的研究中發現數字與數量之間的處理達至十分精熟狀態約是在7歲之後,因此6~8歲在數字概念的發展上是十分重要且關鍵的,但是許多研究之間的發現並不一致,再加上東、西方文化上的差異,而使得孩童對於數量認知概念的發展階段上有些許的不同。
本研究主要想探討孩童在數字與數量概念之間的自動化處理。利用數值史楚普作業(Numerical Stroop task) 去探討6歲孩童在進行物理大小判斷時受到數值大小的干擾程度。由於6歲是孩童正在建立數字系統的時期,而我們想瞭解孩童的數量概念,因此我們採用兩種(數字和圓點)方式去探討孩童對於數量的認知概念。然而我們的結果與先前的發現很不一致,我們發現6歲孩童在對數字的物理大小判斷上受到數值上的干擾,這表示孩童對於數字的處理上已經達到自動化,而且對於具體數量的處理上也十分精熟,相較於成人的實驗結果,孩童的表現受到具體數量的干擾高於數字,這意味著孩童目前較依賴以具體數量的方式處理,然而隨著對數字的使用頻繁而讓我們對於數量處理的方式有所改變,由此可知我們對於數量的認知概念會隨著年齡上的發展,逐漸地從具體概念發展至抽象概念。
透過此研究結果可以瞭解孩童的數量認知發展,在先前的研究中發現7歲之後的孩童在數字處理上達自動化,雖然6歲孩童的發展階段介於具體數量與數字間,但在我們的結果中發現6歲孩童不論在哪種情況中皆已達自動化處理,此結果顯示我們的孩童對於數量的處理上發展較早且快速,而且隨著數量認知上的發展孩童對於數量的處理會發生改變:由原本以具體數量為主要的處理方式轉變成以數字處理為主。
摘要(英) Numerical concepts have been the basis for mathematics learning. It is very important that stage of cognitive development for numerical of concept in children. Previous study found that the ability to automatically process numerical is approximately in 6-8 years old, but many studies findings are not consistent. Because ofthe Eastern and Western cultural differences may make the number of children for the concept development stage of cognitive slightly different.
Our study aims to investigate the number of children between the concepts in the Arabic number and numerical automated processing. Using numerical Stroop tasks, this study examined whether 6 years old showed automatic processing of numerical magnitude. In this study children and adults performed numerical and physical size judgments on a symbolic (Arabic number) and non-symbolic (groups of dots) on numerical Stroop task.The outcomes would reveal whether an interference effect can be obtained irrespective of notation.
We found that 6 years old children showed automatic processing of numerical magnitude. Our results are different from previous studies’ findings about the onset age for automatic processing of numerical magnitude. In physical size comparison on both tasks by children revealed an interference effect for non-symbolic higher than symbolic notation, indicating that non-symbolic is related to the mathematical or cognitive abilities at the present stage. Therefore this development of numerical of with age and numerical concept developed from the concrete to the abstract concept. Because of we were increased frequency of use of abstract number that let we more mastery for Arabic number.
關鍵字(中) ★ 數字
★ 具體數量
★ 數值史楚普作業
關鍵字(英) ★ magnitude
★ numerical stroop task
★ symbolic
★ non-symbolic
論文目次 目錄
目錄 iv
第一章 1
前言 1
1.1數值史楚普作業 (Numerical Stroop Task) 2
1.1.1 大小一致性效果 5
1.1.2 促進效果(facilitation effect)與干擾效果(interference effect)的處理歷程 7
1.1.3數距效果(Distance effect ) 10
1.1.4大小一致性效果(Size congruity effect) 和數距效果(distance effect)在數量上的處理歷程 11
1.2 數量發展(Numerical magnitude development) 12
1.2.1 數字表徵與具體數量表徵(Symbolic and non-symbolic numerical representation) 13
1.2.2數字表徵之發展(Development of Symbolic numerical representation) 15
1.2.3具體數量表徵之發展(Development of Non-symbolic numerical representation) 17
1.2.4 數字與具體數量表徵之大小一致性效果(Symbolic and non-symbolic representation in the size congruity effect) 19
1.3研究動機與目的(Propose) 20
第二章實驗1 23
2.1數字判斷(symbolic magnitude) 23
2.1.1受試者(Subjects) 23
2.1.2實驗程序(Procedure) 23
2.1.3數值史楚普作業(Numerical Stroop task) 24
2.2 實驗1之結果(Results) 26
2.2.1孩童實驗之結果 27
2.2.2孩童實驗結果之討論 31
2.2.3成人實驗之結果 32
2.2.4成人實驗結果之討論 36
2.3實驗1-1 37
2.3.1受試者(Subjects) 37
2.3.2實驗程序(Procedure) 37
2.3.3 數值史楚普作業(Numerical Stroop task) 37
2.4 實驗1-1之結果(Result) 38
2.4.1 成人實驗之結果 38
2.5孩童與成人實驗結果之比較 46
2.5.1孩童與成人實驗結果之討論 48
第三章實驗2 50
3.1 具體數量判斷(non-symbolic magnitude) 50
3.1.1受試者(Subjects) 50
3.1.2實驗程序(Procedure) 50
3.1.3 數值史楚普作業(Numerical Stroop task) 51
3.2 實驗2之結果(Results) 52
3.2.1孩童實驗之結果 52
3.2.2孩童實驗結果之討論 56
3.2.3成人實驗之結果 57
3.2.4成人實驗結果之討論 60
3.2.5成人與孩童實驗結果之比較 60
3.2.6孩童與成人實驗結果之討論 61
3.3 孩童與成人在數字與具體數量實驗結果之比較 62
第四章 綜合討論 64
4.1實驗發現與討論 64
4.2數字(symbolic magnitude)與具體數量(non-symbolic magnitude)之比較 64
4.3兒童發展趨勢 67
4.4 結論 67
4.5研究限制與未來計畫 68
參考文獻 69
參考文獻 Aster, M. G. Von, Psychiatry, A., Red, G., & Hospitals, C. (2007). Review Number development and developmental dyscalculia, 868–873.
Butterworth, M. D. B. (1997). A dissociation of number meanings. Cognitive Neuropsychology, 14(4), 613–636. doi:10.1080/026432997381501
Chen, C., & Stevenson, H. W. (1988). Cross-linguistic differences in digit span of preschool children. Journal of Experimental Child Psychology, 46(1), 150–158. doi:10.1016/0022-0965(88)90027-6
Cohen Kadosh, R., & Henik, A. (2006). A common representation for semantic and physical properties. Experimental Psychology (formerly “Zeitschrift für Experimentelle Psychologie”), 53(2), 87–94. doi:10.1027/1618-3169.53.2.87
Cohen Kadosh, R., Lammertyn, J., & Izard, V. (2008). Are numbers special? An overview of chronometric, neuroimaging, developmental and comparative studies of magnitude representation. Progress in neurobiology, 84(2), 132–47. doi:10.1016/j.pneurobio.2007.11.001
Cohen Kadosh, R., & Walsh, V. (2009). Numerical representation in the parietal lobes: abstract or not abstract? The Behavioral and brain sciences, 32(3-4), 313–28; discussion 328–73. doi:10.1017/S0140525X09990938
Dehaene, S, Dehaene-Lambertz, G., & Cohen, L. (1998). Abstract representations of numbers in the animal and human brain. Trends in neurosciences, 21(8), 355–61. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9720604
Dehaene, Stanislas, Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive neuropsychology, 20(3), 487–506. doi:10.1080/02643290244000239
Dehaene, S., & Akhavein, R. (1995). Attention, automaticity, and levels of representation in number processing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21((2)), 314.
Gebuis, T., Cohen Kadosh, R., De Haan, E., & Henik, A. (2009). Automatic quantity processing in 5-year olds and adults. Cognitive Processing, 10(2), 133–142. Retrieved from http://discovery.ucl.ac.uk/177420/
Gebuis, T., Herfs, I. K., Kenemans, J. L., de Haan, E. H. F., & van der Smagt, M. J. (2009). The development of automated access to symbolic and non-symbolic number knowledge in children: an ERP study. The European journal of neuroscience, 30(10), 1999–2008. doi:10.1111/j.1460-9568.2009.06994.x
Gebuis, T., Kenemans, J. L., de Haan, E. H. F., & van der Smagt, M. J. (2010). Conflict processing of symbolic and non-symbolic numerosity. Neuropsychologia, 48(2), 394–401. doi:10.1016/j.neuropsychologia.2009.09.027
Girelli, L., Lucangeli, D., & Butterworth, B. (2000). The development of automaticity in accessing number magnitude. Journal of experimental child psychology, 76(2), 104–22. doi:10.1006/jecp.2000.2564
Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the “Number Sense”: The Approximate Number System in 3-, 4-, 5-, and 6-year-olds and adults. Developmental psychology, 44(5), 1457–65. doi:10.1037/a0012682
Henik, A., & Tzelgov, J. (1982). Is three greater than five : The relation between physical and semantic size in comparison tasks, 10(4).
Kaufmann, L., Koppelstaetter, F., Delazer, M., Siedentopf, C., Rhomberg, P., Golaszewski, S., … Ischebeck, A. (2005). Neural correlates of distance and congruity effects in a numerical Stroop task: an event-related fMRI study. NeuroImage, 25(3), 888–98. doi:10.1016/j.neuroimage.2004.12.041
Kazem, A. M., Alzubiadi, A. S., Alkharusi, H. A., Yousif, Y. H., Alsarimi, A. M., Al-Bulushi, S. S., ... & Alshammary, B. M. (2009). A Normative Study of the Raven Coloured Progressive Matrices Test for Omani Children Aged 5-11 Years, 34(1), 37–51.
Kucian, K., & Kaufmann, L. (2009). A developmental model of number representation. Behavioral and Brain Sciences, 32(3-4), 340–341.
Miller, K. F., Kelly, M., & Zhou, X. (2005). Learning mathematics in China and the United States. In Handbook of mathematical cognition (pp. 163–178). Handbook of mathematical cognition.
Mussolin, C., & Noël, M.-P. (2007). The nonintentional processing of Arabic numbers in children. Journal of Clinical and Experimental Neuropsychology, 29(3), 225–234. doi:10.1080/13803390600629759
Pinel, P., Piazza, M., Le Bihan, D., & Dehaene, S. (2004). Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments. Neuron, 41(6), 983–93. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15046729
Rubinsten, O., Henik, A., Berger, A., & Shahar-Shalev, S. (2002). The development of internal representations of magnitude and their association with Arabic numerals. Journal of Experimental Child Psychology, 81(1), 74–92. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11741375
Schwarz, W, & Heinze, H. J. (1998). On the interaction of numerical and size information in digit comparison: a behavioral and event-related potential study. Neuropsychologia, 36(11), 1167–79. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9842762
Schwarz, Wolfgang, & Ischebeck, A. (2003). On the relative speed account of number-size interference in comparative judgments of numerals. Journal of Experimental Psychology: Human Perception and Performance, 29(3), 507–522. doi:10.1037/0096-1523.29.3.507
Stanislas Dehaene, Serge Bossini, and P. G. (1993). The Mental Representation of Parity and Number Magnitude. Journal of Experimental Psychology.
Starkey, P., & Cooper, R. G. (1980). Perception of numbers by human infants. Science (New York, N.Y.), 210(4473), 1033–5. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7434014
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643–662. doi:10.1037/h0054651
Szucs, D., & Soltész, F. (2007). Event-related potentials dissociate facilitation and interference effects in the numerical Stroop paradigm. Neuropsychologia, 45(14), 3190–202. doi:10.1016/j.neuropsychologia.2007.06.013
Tang, J., Critchley, H. D., Glaser, D. E., Dolan, R. J., & Butterworth, B. (2006). Imaging informational conflict: a functional magnetic resonance imaging study of numerical stroop. Journal of cognitive neuroscience, 18(12), 2049–62. doi:10.1162/jocn.2006.18.12.2049
Tzelgov, J., Henik, a, & Berger, J. (1992). Controlling Stroop effects by manipulating expectations for color words. Memory & cognition, 20(6), 727–35. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1435275
Walsh, V. (2003). A theory of magnitude: common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7(11), 483–488. doi:10.1016/j.tics.2003.09.002
Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74(1), B1–B11. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10594312
Xu, F., Spelke, E. S., & Goddard, S. (2005). Number sense in human infants. Developmental science, 8(1), 88–101. doi:10.1111/j.1467-7687.2005.00395.x
Zhou, X., Chen, Y., Chen, C., Jiang, T., Zhang, H., & Dong, Q. (2007). Chinese kindergartners’ automatic processing of numerical magnitude in stroop-like tasks. Memory & cognition, 35(3), 464–70.
指導教授 阮啟弘(Chi-Hung Juan) 審核日期 2013-11-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明