博碩士論文 100230002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:35.175.200.4
姓名 陳維民(Wei-min Chen)  查詢紙本館藏   畢業系所 物理學系
論文名稱 固醇結構對PC膜物理特性的影響
相關論文
★ 用氘核磁共振儀研究含高濃度麥角脂醇的DPPC人造膜之分子交交互作用★ Fluorescence study of lipid membranes containing sterol
★ 含固醇的脂質雙層膜的形態及相行為的研究★ The effects of composition and thermal history on the properties of supported lipid bilayers
★ The effect of sterol on the POPE/DPPC membranes★ 麥角固醇對含膽固醇的脂雙層膜的影響
★ Deuterium NMR Study of the Effect of Stigmasterol on POPE Membranes★ 運用氘核磁共振儀研究POPC/cholesterol膜之物理性質
★ 模型細胞膜(含有相同碳鏈的PC/PE)存在或缺乏固醇類的物理性質★ 運用氘核磁共振研究DPPC/POPE/sterol人造細胞膜之物理性質
★ Phase Behavior and Molecular Interactions of Membranes Containing Phosphatidylcholines and Sterol: A Deuterium NMR Study★ The physical properties of phytosterol-containing lipid bilayers
★ An AFM Study on Supported Lipid Bilayers with and without Sterol★ β-谷固醇對POPE膜物理特性的影響
★ 人造細胞膜的相行為及脂質-固醇交互作用之研究★ 非接觸式無機液晶配向與混合型液晶元件之 光電性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 固醇對於生物膜的特性及功能具有重要的作用。大多數研究聚焦於含低濃度固醇的細胞膜。對於含高濃度固醇(30 mol%以上)的細胞膜的研究較少。有些細胞膜中的膽固醇的含量可以高達40 mol%以上,如老鼠的肝臟細胞、及達到50 mol%的紅血球細胞。因此我們有興趣了解高濃度固醇對脂質雙層膜的效應為何。我們利用核磁共振(2H NMR)與x-ray繞射對含有固醇的磷脂質兩元細胞膜的物理特性進行研究。我們氘化脂質分子sn-1碳氫鏈以利核磁共振(2H NMR)實驗的進行。我們在固定溫度下取得2H NMR光譜與x-ray散射圖隨著固醇濃度改變的實驗數據。我們觀察到在每個脂質/固醇系統中,碳氫鏈有序程度隨著固醇濃度的增加會而增加,且在特定的固醇濃度Cm1飽和。當固醇濃度大於Cx時,在膜處於液晶態下固醇會有溶解極限的產生。我們發現Cm1和Cx的值取決於固醇的種類,並推論這是固醇碳氫鏈上額外的分支阻礙了脂質與固醇間的交互作用所導致。
摘要(英) Sterols play important roles in the lateral organization of membrane. Most studies have been concentrated on membranes containing low sterol concentration (<30 mol %). However, less studies have been performed at the high sterol concentration regime (>30 mol %). It is found that cholesterol content can be as high as 40 mol % in rat liver cells and 50 mol% in red blood cells. The effect of high sterol concentration on the lipid bilayer is of interest. In this work, we have studied the physical properties of phospholipid model membranes containing various sterols using deuterium nuclear magnetic resonance (2H NMR) and x-ray diffraction (XRD). The sn-1 chain of the lipid molecule was predeuterated for the NMR experiment. NMR spectra and x-ray diffraction patterns were taken as a function of sterol concentration at fixed temperature. In each lipid/sterol system, the lipid chain order increases with increasing sterol concentration, then saturates at a specific sterol concentration Cm1. At a higher sterol concentration Cx, the sterol show solubility limit in the liquid-phase membranes. We found that the values of Cm1 and Cx depend on the type of sterol. It is suggested that a bulkier acyl chain of the sterol hinders the lipid-sterol interaction.
關鍵字(中) ★ 核磁共振儀
★ 膽固醇
★ 麥角固醇
★ 人造細胞膜
關鍵字(英) ★ NMR
★ DPPC
★ cholesterol
★ ergosterol
★ beta-sitosterol
★ model membrane
論文目次 提要 I
英文提要 II
致謝 III
目錄 IV
圖目 V
表目 VI
第一章 1
緒論 1
1.1 細胞膜概述 1
1.2流體鑲嵌模型 (Fluid mosaic model) 1
1.3 膜的相行為 3
1.4利用脂質/固醇人造細胞膜研究脂質與固醇間交互作用 4
1.5脂質/固醇人造細胞膜組成 5

第二章 9
實驗方法與材料 9
2.1 2H NMR實驗 9
2.1.1 2H NMR原理 9
2.1.2 電四極交互作用 10
2.1.3粉狀光譜(Powder Spectrum) 12
2.1.4 First Moment定義 14
2.1.5 NMR實驗參數 14
2.2.1 2H NMR 實驗材料 15
2.2.2 2H NMR 樣品配製 15

2.3 X-ray繞射 (X-ray Diffraction)實驗 16

2.3.1X-ray繞射(XRD)基本原理 16

2.3.2 XRD樣品配製 18

2.3.3 XRD實驗儀器參數 19

2.3.4 XRD實驗方法 20

2.3.5 XRD數據處理與分析 22

第三章 23
結果與討論 23
3.1 DPPC-d31多層微脂粒(MLVs)於2H NMR和XRD實驗參數取決
方法 23
3.2 DPPC-d31/β-sitosterol 脂雙層膜 27
3.3 DPPC-d31/cholesterol 脂雙層膜 35
3.4 DPPC-d31/ergosterol 脂雙層膜 42
3.5 綜合結果比較與討論 48

第四章 51
結論 51

參考文獻 54
參考文獻 參考文獻

[1] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson. Molecular Biology of the Cell. Fifth Edition (2008).
[2] M. Luckey, Membrane structural biology: with biochemical and biophysical foundations, Cambridge Univ Pr, 2008.
[3] S. J. Singer and G. L. Nicolson. The fluid mosaic model of the structure of cell membranes. Science 175 (1972) 720–731.
[4] Karnovsky, Morris J., et al. ”LIPID DOMAINS IN MEMBRANES*.” Annals of the New York Academy of Sciences 401.1 (1982): 61-74.
[5] K. Simons, and E. Ikonen. Functional rafts in cell membranes. Nature 387 (1997) 569-572.
[6] D.A. Brown, and E. London. Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Biochemical And Biophysical Research Communications 240 (1997) 1–7.
[7] S. Mukherjee, and F.R. Maxfield. Role of membrane organization and membrane domains in endocytic lipid trafficking. Traffic 1 (2000) 203-211.
[8] D. L. Nelson and M. M. Cox. Lehninger principles of biochemistry (4th edn). Worth Publisher, New York, 2005.
[9] D.A. Brown, E. London, Structure and function of sphingolipid-and cholesterol-rich membrane rafts, Journal of Biological Chemistry 275 (2000) 17221-17224.
[10] Philip L. Yeagle. (2004) The structure of biological membranes, 2nd edition
CRC Press LLC, Boca Raton, p. 58.
[11] S. Raffy, and J. Teissié. Control of Lipid Membrane stability by cholesterol Content. Biophysical Journal 76 (1999) 2072-2080.
[12] Ohvo-Rekilä, Henna, et al. ”Cholesterol interactions with phospholipids in membranes.” Progress in lipid research 41.1 (2002): 66-97.
[13] Pike, Linda J. ”Lipid rafts bringing order to chaos.” Journal of lipid research 44.4 (2003): 655-667.
[14] Head, Brian P., Hemal H. Patel, and Paul A. Insel. ”Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling.” Biochimica et Biophysica Acta (BBA)-Biomembranes 1838.2 (2014): 532-545.
[15] E. Endress, S. Bayerl, K. Prechtel, C. Maier, R. Merkel, T.M. Bayerl, The effect of cholesterol, lanosterol, and ergosterol on lecithin bilayer mechanical properties at molecular and microscopic dimensions: a solid-state NMR and micropipet study, Langmuir 18 (2002) 3293-3299.
[16] Y. W. Hsueh, K. Gilbert, C. Trandum, M. Zuckermann, and J. Thewalt. The effect of ergosterol on dipalmitoylphosphatidylcholine bilayers: A deuterium NMR and calorimetric study. Biophysical Journal 88 (2005) 1799-1808.
[17] Holthuis, Joost CM, and Tim P. Levine. ”Lipid traffic: floppy drives and a superhighway.” Nature reviews molecular cell biology 6.3 (2005): 209-220.
[18] Veen, Markus, Ulf Stahl, and Christine Lang. ”Combined overexpression of genes of the ergosterol biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae.” FEMS yeast research 4.1 (2003): 87-95.
[19] Iwaki, Tomoko, et al. ”Multiple functions of ergosterol in the fission yeast Schizosaccharomyces pombe.” Microbiology 154.3 (2008): 830-841.
[20] Siddiqui S., Siddiqui B.S., Adil Q. and Begum S. (1990). ”Constituents of Mirabilis jalapa”. Fitoterapia 61 (5): 471
[21] Kopyt’Ko, Ya. F.; Lapinskaya, E. S.; Sokol’Skaya, T. A. (January 2012). ”Application, chemical composition, and standardization of nettle raw material and related drugs (Review)”. Pharmaceutical Chemistry Journal 45 (10): 622.doi:10.1007/s11094-012-0690-7
[22] Simons, K., and Ikonen, E. 2000. Cell biology-how cells handle cholesterol. Science. 290:1721-1726
[23] K. Block D.E. Vance, J.E. Vance (Eds.), Biochemistry of Lipids and Membranes, The Benzamin/Cummins, Menlo Park, CA (1985), pp. 1–24
[24] Simons, K., Toomre, D. Nat. ReV. Mol. Cell Biol. 2000, 1, 31-39
[25] McMullen, T. P. W., and McElhaney, R. N. 1996. Physical studies of cholesterol-phospholipid interactions. Curr. Opin. Colloid Interface Sci. 1:83-90
[26] Zabrocki, Piotr, et al. ”Phosphorylation, lipid raft interaction and traffic of α-synuclein in a yeast model for Parkinson.” Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1783.10 (2008): 1767-1780.
[27]. Shi, Chun, et al. ”Incorporation of β-sitosterol into the membrane increases resistance to oxidative stress and lipid peroxidation via estrogen receptor-mediated PI3K/GSK3β signaling.” Biochimica et Biophysica Acta (BBA)-General Subjects 1830.3 (2013): 2538-2544.
[28] C. P. Slichter. Principles of magnetic resonance (3rd edn). Springer-Verlag, Berlin, 1990.
[29] James H. Davis. The description of membrane lipid conformation, order and dynamics by 2H-NMR. Biochimica et Biophysica Acta 737 (1983) 117– 171.
[30] A. Guinier, G. Fournet, C. Walker, and K. Yudowitch. Small-Angle Scattering of X-rays. John Wiley and Sons, Inc., 1955.
[31] O. Glatter; O. Kratky ED., ”Small Angle X-ray Scattering”, Academic Press, 1982.
[32] ”小角度X光散射在高分子奈米結構解析之應用” Polymer Nanostructures Studied by Small Angle X-Ray Scattering Hsin-Lung Chen, U-Ser Jeng
[33] J.H. Hubbell, Wm.J. Veigele, E.A. Briggs, R.T. Brown, D.T. Cromer and R.J. Howerton, ”Atomic form factors, incoherent scattering functions, and photon scattering cross sections,” J. Phys. Chem. Ref. Data 4, 471-538 (1975); erratum in 6, 615-616 (1977).
[34] J.H. Hubbell and I. Øverbø, ”Relativistic atomic form factors and photon coherent scattering cross sections,” J. Phys. Chem. Ref. Data 8, 69-105 (1979).
[35] ”The SAXS Guide Getting acquainted with the principles” Heimo Schnablegger and Yashveer Singh
[36] Kun-Ming , Lo, Molecular Interaction in Lipid Mixtures Containing DPPC and High Concentration of Ergosterol: A Deuterium NMR Study (崑銘的碩論)
[37] Craven, Bryan M. ”Crystal structure of cholesterol monohydrate.” (1976): 727-729.
指導教授 薛雅薇(Ya-wei Hsueh) 審核日期 2015-1-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明