博碩士論文 100232001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.84.139.101
姓名 丁姿妍(Zi-yan Ting)  查詢紙本館藏   畢業系所 照明與顯示科技研究所
論文名稱 高濃度YAG螢光粉光學模型之建立與分析
(Optical Modeling of YAG Phosphor in Higher Concentration for White LEDs)
相關論文
★ 奈米電漿子感測技術於生物分子之功能分析★ 表面結構擴散片之設計、製作與應用
★ 新型光電生化感測器之分析與研究★ 薄膜電晶體液晶顯示器中視角色偏之優化補償方法
★ 特定色度背光模組零組件之光學特性評估★ 電子紙增亮分析與模擬設計
★ CCD 量測儀器之研究與探討★ 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用
★ 多光束繞射光學元件應用在DVD光學讀取頭之設計★ 高位移敏感度之全像多工光學儲存之研究
★ 利用亂相編碼與體積全像之全光學式光纖感測系統★ 體積光柵應用於微物3D掃描之研究
★ 具有偏極及光強分佈之孔徑的繞射極限的研究★ 三維亂相編碼之體積全像及其應用
★ 透鏡像差的量測與MTF的驗證★ 二位元隨機編碼之全像光學鎖之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文中,使用噴塗形式封裝技術建立高濃度螢光粉光學模型。光學模型包含了散射模型、吸收係數與轉換效率等光學特性,光線於螢光粉膠體中的散射行為,我們將利用蒙地卡羅光追跡法結合米氏散射理論來描述,藉由藍光與黃光兩次光追跡來描述白光的光學特性,接著經由實驗與模擬來分析吸收係數與轉換效率。另外,由於螢光粉對不同波長激發光的吸收能力皆不相同,最後將引入β參數來提高螢光粉模型在色彩表現預測的準確性。最後比較實際封裝與模擬結果,分析在不同相關色溫下之頻譜與色座標、封裝效率及空間色彩分佈,藉此驗證此高濃度螢光粉光學模型之準確性。
摘要(英) In this thesis, we have successfully built up an optical modeling of YAG phosphor in higher concentration with conformal coating. The optical modeling process includes scattering modeling, absorption coefficient and conversion efficiency. We simulate the scattering properties in YAG phosphor with Mie scattering theory based on Monte Carlo ray tracing. The simulation includes the optical behaviors of blue lights and yellow lights. The experimental measurement results are applied to figure out the absorption coefficient and conversion efficiency. Since the absorption and the emission of the phosphor is a function of incident wavelength, we introduce a β factor to increase the accuracy of phosphor simulation. Finally, we analyze the spectrum, color coordinate, packaging efficiency, and angular correlated color temperature distribution of white LEDs at different correlated color temperatures for the experimental and simulative results to verify the precision.
關鍵字(中) ★ 螢光粉光學模型
★ 散射模型
★ 吸收係數
★ 轉換效率
★ β校正
關鍵字(英) ★ optical modeling of phosphor
★ scattering modeling
★ absorption coefficient
★ conversion efficiency
★ β modification
論文目次 目錄
摘要 I
Abstract II
誌謝 III
目錄 V
圖目錄 VII
表目錄 XII
第一章 緒論 1
1-1 引言 1
1-2 LED背景 2
1-3 研究動機 7
1-4 論文大綱 11
第二章 基本原理 12
2-1 引言 12
2-2 LED發光原理 12
2-3 螢光粉發光原理與特性 14
2-4 混光原理 17
2-5 色彩學 18
第三章 高濃度YAG螢光粉光學模型之建立 25
3-1 引言 25
3-2 高濃度YAG螢光粉光學模型 26
3-3 螢光粉散射模型 27
3-4 螢光粉的吸收係數 34
3-5 螢光粉的轉換效率 41
第四章 螢光粉特性分析與光學模型驗證 44
4-1 引言 44
4-2 螢光粉光學模型之分析 44
4-3 藍光頻譜校正 50
4-4 螢光粉光學模型之驗證 55
第五章 結論 80
參考文獻 82
中英文名詞對照表 94
參考文獻 [1] P. Waide and S. Tanishima, Light′s Labour′s Lost: Policies for Energy-Efficient Lighting (International Energy Agency, Paris, 2006).
[2] 全球禁用白熾燈時間表,http://www.get-led.com/topics.aspx?id=146.
[3] Restriction of Hazardous Substances Directive, http://en.wikipedia.org/wiki/Restriction_of_Hazardous_Substances_Directive.
[4] A. Zukauskas, M. S. Shur, and R. Gaska, Introduction to Solid State Lighting (John Wiley & Sons, New York, 2002).
[5] M. Yamada and D. Chwastyk, Adoption of Light-Emitting Diodes in Common Lighting Applications (U.S. Department of Energy, Washington, D.C., 2013).
[6] H. J. Round, “A note on carborundum,” Electrical World 49, 309 (1907).
[7] Light-emitting diode, http://en.wikipedia.org/wiki/Light-emitting_diode.
[8] N. H. Jr. and S. F. Bevaqua, “Coherent (visible) light emission from Ga(As1–xPx) junctions,” Appl. Phys. Lett. 1, 82-83 (1962).
[9] S. Nakamura and G. Fasol, The Blue Laser Diode: GaN Based Light Emitters and Lasers (Spinger, Berlin, 1997).

[10] 孫慶成,「螢光粉模型與LED光色的控制」,2010 LED固態照明研討論文集,中壢市,中華民國九十九年。
[11] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925 (1999).
[12] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687-1689 (1994).
[13] J. Y. Tsao, Light Emitting Diodes (LEDs) for General Illumination: An OIDA Technology Roadmap Update 2002 (Optoelectronics Industry Development Association, Washington, D.C., 2002).
[14] Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and Takashi Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D: Appl. Phys. 43 354002 (2010).

[15] D. A. Steigerwald, J. C. Bhat, D. Collins, R.M. Fletcher, M.O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Topics Quantum Electron. 8, 310-320 (2002).
[16] J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L.W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, and R. K. Wu, “White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors,” IEEE Photon. Technol. Lett. 15, 18-20 (2003).
[17] T. F. McNulty, B. Lake, D. D. Doxsee, S. Hills, and J. W. Rose, “UV reflector and UV-based Light Source Having Reduced UV Radiation Leakage Incorporating The Same,” United States Patent, US 6686676 B2 (2004).
[18] S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Topics Quantum Electron. 8, 333-338 (2002).
[19] S. Muthu, “Controlling method and system for RGB based LED luminary,” United States Patent, US 6507159 (2003).
[20] A. A. Setlur, A. M. Srivastava, H. A. Comanzo, and D. D. Doxsee, “Phosphor Blends for Generating White Light from Near-UV/Blue Light-Emitting Devices,” United States Patent, US 6685852 B2 (2004).
[21] H. Wu, X. Zhang, C. Guo, J. Xu, M. Wu, and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with Green/red phosphors,” IEEE Photon. Technol. Lett. 17, 1160-1162 (2005).
[22] N. Kimura, K. Sakuma, S. Hirafune, K. Asano, and N. Hirosaki, “Extrahigh color rendering white light-emitting diode lamps using oxynitride and nitride phosphors excited by blue light-emitting diode,” Appl. Phys. Lett. 90, 051109 (2007).
[23] 何信穎,白光 LED 之 YAG 螢光粉光學模型之研究,國立中央大學光電科學研究所碩士論文,中華民國九十六年。
[24] C. C. Sun, C. Y. Chen, H. Y. He, C. C. Chen, W. T. Chien, T. X. Lee, and T. H. Yang, “Precise optical modeling for silicate-based white LEDs,” Opt. Express 16, 20060-20066 (2008).
[25] 紀葦世,高效能YAG螢光粉之特性量測與模型,元智大學光電工程研究所碩士論文,中華民國九十九年。
[26] 劉瑋瑋,白光 LED 之螢光粉熱衰探討,國立中央大學光電科學研究所碩士論文,中華民國一百年。
[27] 郭冠廷,不同激發光螢光粉光學模型之分析,國立中央大學光電科學研究所碩士論文,中華民國一百零一年。
[28] C. C. Sun, C. Y. Chen, J. H. Chang, T. H. Yang, W. S. Ji, Y. S. Jeng, and H. M. Wu, “Linear calculation model for prediction of color redering index performance associated with correlated color temperature of white light-emitting diodes with two phosphors,” Opt. Eng. 51, 054003 (2012).
[29] 張容瑄,綠橘雙色矽酸鹽螢光粉光學模型之建立與分析,國立中央大學光電科學研究所碩士論文,中華民國九十九年。
[30] 彭逸寧,雙色分層螢光粉光學模型之建立與分析,國立中央大學光電科學研究所碩士論文,中華民國一百零一年。
[31] S. J. Duclos, J. Jansma, J. C. Bortscheller, and R. J. Wojnarowski, “Phosphor Coating with Self-adjusting Distance from LED Chip,” United States Patent, US 6635363 B1 (2003).
[32] N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency,” Phys. Stat. Sol. (a) 202, R60-R62 (2005).
[33] S. C. Allen and A. J. Steckl, “ELiXIR- solid-state luminaire with enhanced light extraction by internal,” J. Display Technol. 3, 155-159 (2007).
[34] M. T. Lin, S. P. Ying, M. Y. Lin, K. Y. Tai, S. C. Tai, C. H. Liu, J. C. Chen, and C. C. Sun, “Ring remote phosphor structure for phosphor-converted white LEDs,” IEEE Photon. Technol. Lett. 22, 574-576 (2010).
[35] Z. Liu, S. Liu, K. Wang, and X. Luo, “Effects of phosphor’s location on LED packaging performance,” ICEPT-HDP, 1-7 (2008).
[36] C. Sommer, F. P. Wenzl, P. Hartmann, P. Pachler, M. Schweighart, and G. Leising, “Tailoring of the color conversion elements in phosphor-converted high power LEDs by optical simulations,” IEEE Photon. Technol. Lett. 20, 739-741 (2008).
[37] B. Hou, H. Rao, and J. Li, “Methods of Increasing Luminous Efficiency of Phosphor-Converted LED Realized by Conformal Phosphor Coating,” J Display Technol. 5, 57-60 (2009).
[38] H. T. Huang, C. C. Tsai, and Y. P. Huang, “Conformal phosphor coating using pulsed spray to reduce color deviation of white LEDs,” Opt. Express, 18, A201-A206 (2010).
[39] D. A. Neamen, Semiconductor Physics and Devices: Basic Principles (McGraw-Hill, New York, 2003).
[40] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, New York, 1981).
[41] D. A. Neamen, Microelectronics Circuit Analysis and Design (McGraw-Hill, New York, 2007).
[42] 孫慶成,光電工程概論,全華圖書股份有限公司,新北市,中華民國一百零一年。
[43] E. F. Schubert, Light Emitting Diodes (Cambridge University Press, Cambridge, 2003).
[44] 陳隆建,發光二極體之原理與製程,全華圖書股份有限公司,台北縣,中華民國一百年。
[45] 郭浩中、賴芳儀和郭守義,LED原理與應用,五南出版有限公司,台北市,民國九十八年。
[46] 劉如熹,白光發光二極體製作技術-由晶粒金屬化至封裝,全華科技圖書公司,台北縣,民國九十七年。
[47] 劉如熹和王健源,白光發光二極體製作技術-21世紀人類的新曙光,全華科技圖書公司,台北縣,民國九十四年。

[48] P. K. Brown, and G. Wald, “Visual pigments in single rods and cones of the human retina,” Sci. 144, 45-52 (1964).
[49] 大田登,色彩工程學理論與應用,全華圖書股份有限公司,台北縣,中華民國九十七年。
[50] International Commission on Illumination, Commission Internationale de l′Eclairage Proceedings (Cambridge University Press, Cambridge, 1931).
[51] CIE 1931 color space, http://en.wikipedia.org/wiki/CIE_1931_color_space.
[52] G. Wyszecki and W. S. Stiles, Color Science, 2nd ed. (John Wiley & Sons, New York, 2000).
[53] CIE 1931 color space, http://en.wikipedia.org/wiki/CIE_1931_color_space.
[54] CIE 1960 color space, http://en.wikipedia.org/wiki/CIE_1960_color_space.
[55] CIE 1976 color space, http://en.wikipedia.org/wiki/CIELUV.
[56] 陳靜儀,矽酸鹽螢光粉用於白光 LED 之光學模型,國立中央大學光電科學研究所碩士論文,中華民國九十七年。
[57] C. C. Sun, C. Y. Chen, H. Y. He, C. C. Chen, W. T. Chien, T. X. Lee, and T. H. Yang, “Precise optical modeling for silicate-based white LEDs,” Opt. Express 16, 20060-20066 (2008).
[58] S. J. Lee, “Analysis of light-emitting diodes by Monte-Carlo photon simulation,” Appl. Opt. 40, 1427-1437 (2001).
[59] Z. Y. Ting and C. McGill, “Monte Carlo simulation of light-emitting diode light-extraction characteristics,” Opt. Eng. 34, 3545-3553 (1995)
[60] Breault Research Organization, http://www.breault.com/.
[61] Y. Shuai, N. T. Tran, and F. G. Shi, “Nonmonotonic phosphor size dependence of luminous efficacy for typical white LED emitters,” IEEE Photon. Technol. Lett. 23, 552-554 (2011).
[62] N. T. Tran, J. P. You, and F. G. Shi, “Effect of phosphor particle size on luminous efficacy of phosphor-converted white LED,” J. Lightw. Technol. 27, 5145-5150 (2009).
[63] J. P. Chevaillier, J. Fabre, and P. Hamelin, “Forward scattered light intensities by a sphere located anywhere in a Gaussian beam,” Appl. Opt. 25, 1222-1225 (1986).
[64] H. C. Hulst, Light Scattering by Small Particles (John Wiley & Sons, New York, 1957).
[65] D. Toublanc, “Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computations,” Appl. Opt. 35, 3270-3274 (1996).
[66] C. F. Bohren and G. Koh, “Forward-scattering corrected extinction by nonspherical particles,” Appl. Opt. 24, 1023-1029 (1985).
[67] P. Yang, H. Wei, H. Wei, H. L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near-through far-infrared spectral region,” Appl. Opt. 44, 5512-5523 (2005).
[68] C. C. Chang, R. Chern, C. C. Chang, C. Chu, J. Y. Chi, J. Su, I. M. Chan, and J. T. Wang, “Monte Carlo simulation of optical properties of phosphor-screened ultraviolet light in a white light-emitting device,” Jpn. J. Appl. Phys. 44, 6056-6061 (2005).
[69] M. Kerker, H. Chew, P. J. McNulty, J. P. Kratohvil, D. D. Cooke, M. Sculley, and M. P. Lee, “Light scattering and fluorescence by small particles having internal structure,” J. Histochem. Cytochem. 27, 250-263 (1979).
[70] Q. Fu and W. Sun, “Mie theory for light scattering by a spherical particle in an absorbing medium,” Appl. Opt. 40, 1354-1361 (2001).
[71] I. W. Sudiarta and P. Chylek, “Mie-scattering formalism for spherical particles embedded in an absorbing medium,” J. Opt. Soc. Am. A 18, 1275-1278 (2001).
[72] P. Chýlek, “Light scattering by small particles in an absorbing medium,” J. Opt. Soc. Am. 67, 561-563 (1977).
[73] Á. Borbély and S. G. Johnson, “Performance of phosphor-coated light-emitting diode optics in ray-trace simulations,” Opt. Eng. 44, 111308 (2005).
[74] Á. Borbély and S. G. Johnson, “Performance of phosphor-coated LED optics in ray trace simulations,” Proc. of SPIE 5530, 266-273 (2004).
[75] R. Hua, X. Luo, H. Fenga, and S. Liu, “Effect of phosphor settling on the optical performance of phosphor-converted white light-emitting diode,” J. Lumin. 132, 1252-1256 (2012).
[76] J. D. Ingle and S. R. Crouch, Spectro chemical Analysis (Prentice Hall, New Jersey, 1988).
[77] C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193-2195 (2006).
[78] Cree EZ700, http://www.cree.com/products/pdf/CPR3DF.pdf.
[79] R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, “High-power phosphor-converted light-emitting diodes based on III-Nitrides,” IEEE J. Sel. Topics Quantum Electron. 8, 339-345 (2002).
[80] C. S. McCamy, “Correlated color temperature as an explicit function of chromaticity coordinates,” Col. Res. Appl. 17, 142-144 (1992).
[81] I. Moreno and U. Contreras, “Color distribution from multicolor LED arrays,” Opt. Express, 15, 3607-3618 (2007).
指導教授 孫慶成、楊宗勳(Ching-cherng Sun Tsung-hsun Yang) 審核日期 2014-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明