博碩士論文 100232004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.221.145.52
姓名 陳盈運(Ying-yun Chen)  查詢紙本館藏   畢業系所 照明與顯示科技研究所
論文名稱 複合陣列微透鏡對LED整體出光效率優化設計之研究
(The study of optimization design complex array micro lens on the LED overall light extraction efficiency)
相關論文
★ 以化學製程製備奈米級二氧化鈦並研究其親水性及測試其除霧效果★ 光學三角量測系統量測透鏡曲率與3D曲面之研究
★ 非接觸式自動化光學檢測系統應用於工業磨片缺陷檢測★ 影像處理應用於非均勻材料之熱傳導分析
★ 類神經網路暨圖形辨識之腦波判讀系統★ 加速度感測系統應用於衝床模具損耗之研究
★ 高階自由曲面面鏡之設計★ 腦電波傅利葉特徵頻譜之研究
★ 光電星雲生物晶片之製作★ 電場控制器光學應用
★ 手機照相鏡頭設計★ 氣功靜坐法對於人體生理現象影響之研究
★ 針刺及止痛在大鼠模型的痛覺量測系統★ 新光學三角量測系統與應用
★ 離軸式光學變焦設計★ 腦電波量測與應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究主要是建立發光二極體(Light-emitting diodes,以下簡稱LED)整體出光效率之光學模型,主要是設計三層複合陣列微透鏡在LED上,以增加整體出光效率。三層複合陣列微透鏡皆由四面金字塔形所組成,第一層陣列微透鏡位於藍寶石基板上方;第二層陣列微透鏡位於p-GaN層上方;第三層陣列微透鏡位於封裝體(包含螢光粉)表面。主要設計的參數為各層四面金字塔形之頂角分別為0∘、36∘、72∘108∘144∘和陣列週期分別為1.5μm、2.5μm、3.5μm、4.5μm、5.5μm。
本研究使用蒙地卡羅光線追跡法分析LED在不同設計參數下的整體出光效率,並利用田口方法推得最佳整體出光效率的參數設計。優化結果,參數在第一層陣列微透鏡之四面金字塔形頂角在72∘、陣列週期在3.5μm;第二層陣列微透鏡之四面金字塔形頂角在144∘、陣列週期在2.5μm;第三層陣列微透鏡之四面金字塔形頂角在108∘、陣列週期在4.5μm時會有最佳的整體出光效率,比不加任何微透鏡的LED提升1.52倍。
摘要(英) The study is based light-emitting diode overall light extraction efficiency of the optical model ,it main designed three-layers composite microlens array on the LED, to increase the overall light extraction efficiency for led. Three-layers composite microlens array composed by four faces pyramids, the first layer microlens array is located above the sapphire substrate, the second layer of the microlens array is located above the p-GaN layer, the third layer microlens array is located above the package. It main design parameters for the four faces pyramids angle at apex is 0∘,36∘,72∘,108∘,144 ∘ and array cycle is 1.5μm, 2.5μm, 3.5μm, 4.5μm, 5.5μm.
The study used Monte Carlo ray tracing ,analysis overall light extraction efficiency of different parameters, and it used Taguchi method to get the best design parameters. Optimization results, parameters of the first layer of the micro lens array four faces pyramids’s angle at apex is 72 ∘, array cycle is 3.5μm, parameters of the second layer of the micro lens array four faces pyramids’s angle at apex is 144∘, array cycle is 2.5μm,and parameters of the third layer of the micro lens array four faces pyramids’s angle at apex is 108∘, array cycle is 4.5μm have the best overall light extraction efficiency,than without any micro lens upgrade 1.52 times.
關鍵字(中) ★ 整體出光效率
★ 陣列微透鏡
★ 蒙地卡羅
★ 田口方法
關鍵字(英) ★ overall light extraction efficiency
★ microlens array
★ Monte Carlo
★ Taguchi method
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 研究背景 2
1.3 研究動機 5
1.4 論文架構 7
第二章 LED之整體出光效率光學特性分析 9
2.1 LED發光原理 9
2.2 LED發光效率定義 12
2.2.1 載子注入率 13
2.2.2 內部量子效率 13
2.2.3 光萃取效率 16
2.2.4 外部量子效率 16
2.2.5 螢光粉轉換效率 17
2.2.6 視效效能轉換 17
2.2.7 LED整體轉換過程與效率 18
2.3 LED晶片光萃取效率機制 19
2.3.1 全反射損耗(Total Internal Reflection, TIR) 20
2.3.2 Fresnel 損耗(Fresnel Loss) 21
2.3.3 材料吸收效應 22
2.4 LED晶片光萃取結構 23
2.4.1 電流阻障層(Current Blocking Layer, CBL)與窗口層(Window Layer) 23
2.4.2 底部反射層(Bottom Reflector) 25
2.4.3 晶圓接合(Wafer Bonding)與覆晶接合(Flip Chip) 26
2.4.4 晶片塑形(Chip Shaping, CS) 28
2.4.5 表面粗化(Surface Texture, ST) 30
2.4.6 圖案式藍寶石基板(Patterned Sapphire Substrate, PSS) 31
2.5 半導體蝕刻技術 32
2.6 白光LED螢光粉封裝出光效率機制 35
第三章 LED整體出光萃取模型與田口方法優化建立 39
3.1 LED整體出光萃取模型建立 39
3.1.1 蒙地卡羅光線追跡法(Monte Carlo Ray Tracing Method) 39
3.1.2 LED整體出光萃取模型與模擬參數設定 40
3.2 田口方法優化原理與建立 46
3.2.1 田口實驗計劃法之簡介 48
3.2.2 參數設計 51
3.2.3 直交表 53
3.2.4 信號雜音(S/N)比 55
3.2.5 LED整體出光萃取模型之田口方法參數設計建立 57
第四章 LED整體出光效率與田口方法優化結果分析 61
4.1 田口實驗計畫法建立模擬模型模擬結果 61
4.2 計算各控制因子之信號雜音(S/N)比 63
4.3 田口實驗計畫法預測之最佳組合 65
4.4 各層微透鏡對LED整體出光效率之影響分析 66
4.4.1 第一層陣列微透鏡 66
4.4.2 第二層陣列微透鏡 67
4.4.3 第三層陣列微透鏡 67
第五章 結論與未來展望 69
5.1 結論 69
5.2 未來展望 70
參考文獻 72
參考文獻 [1] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O, Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with Solid State Lighting Technology,” IEEE J. Selected Topics in Quantum Electron 8, 310-320 (2002).
[2] A. Zukauskas, M. S. Shur, and R. Caska, Introduction to Solid-state Lighting (John Wiley & Sons, New York, 2002).
[3] E. F. Schubert, and J. K. Kim, “Solid-state light sources becoming smart,” Science 308, 1274-1278 (2005).
[4] U.S. Department of energy, http://www.energy.gov/.
[5] LEDinside, TrendForce Corp., http://www.ledinside.com.tw/
[6] H. J. Round, “A note on carborundum,” Electrical world 49, 309-310 (1907).
[7] G. Destriau, “AC electroluminesence in ZnS,” J. Chimie Phys. 33, 587 (1936).
[8] H. Welker, “New Semiconducting Compounds II,” Z. Naturforsch., 8a, 248-251 (1953).
[9] C. P. Kuo, R. M. Fletcher, T. D. Osentowski, M. C. Lardizabal, M. G., Craford, and V. M. Robbins, “High performance AlInGaP visible light emitting diodes,” Appl. Phys. Lett. 57, 2937-2939 (1990).
[10] H. Sugawara, M. Ishikawa, and G. Hatakoshi, “High-efficiency InAlGaP/GaAs visible light-emitting diodes,” Appl. Phys. Lett. 58, 1010-1012 (1991).
[11] Y. Koide, N. Itoh, K. Itoh, N. Sawaki, and I. Akasaki, “Effect of AlN buffer layer on AlGaN/a-Al 2 O 3 heterepitaxial growth by metal organic vapor phase epitaxy,” Jpn. J. Appl. Phys. 27, 1156-1161 (1988).
[12] H. Amano, N. Sawaki, I. Akasaki, and T. Toyoda, “Metal organic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer”, Appl. Phys. Lett. 48, 353-355 (1986).
[13] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal annealing effects on p-type Mg-doped GaN films”, Jpn. J. Appl. Phys. 31, L139-L142 (1992).
[14] S. Nakamura, T. Mukai, and M. Senoh, “High-brightness InGaN/AlGaN double-heterostructure blue-green-light-emitting diodes”, J. Appl. Phys. 76, 8180-8191 (1994).
[15] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright Green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes”, Jpn. J. Appl. Phys. 34, L1332-L1335 (1995).
[16] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” U.S. Pat. 5,998,925 (1999).
[17] Cree, Inc., http://www.cree.com/
[18] E. F. Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University Press, Cambridge, 2006).
[19] D. A. Neamen, Semiconductor Physics and Devices (McGraw-Hill, New York, 2003).
[20] Wikipedia, http://www.wikipedia.org/.
[21] 郭浩中、賴芳儀和郭守義,LED 原理與應用,p2-3,五南書局,臺北市,中華民國九十八年。
[22] 郭浩中、賴芳儀和郭守義,LED 原理與應用,p19-20,五南書局,臺北市,中華民國九十八年。
[23] 郭浩中、賴芳儀和郭守義,LED 原理與應用,p138-242,五南書局,臺北市,中華民國九十八年。
[24] H. C. Wang, Y. K. Su, Y. H. Chung, C. L. Lin, W. B. Chen, and S. M. Chen, “AlGaInP light emitting diode with a current-blocking structure,” Solid-State Electronics 49, 37-41 (2005).
[25] C. A. Gaw, S. Ariz, D. L. Rode, St. Louis, “Electrical Contact for an LED,” U.S. Pat. 4,864,370 (1989).
[26] K. H. Huang, J. G. Yu, C. P. Kuo, R. M. Fletcher, T. D. Osentowski, L. J. Stinson, and M. G. Craford, “Twofold efficiency improvement in high performance AlGalnP light-emitting diodes in the 555-620 nm spectral region using a thick GaP window layer,” Appl. Phys. Lett. 61, 1045-1047 (1992).
[27] R. H. Horng, D.S. Wuu, S. C. Wei, M. F. Huang, K. H. Chang, P. H. Liu, and K. C. Lin,“AlGaInP/AuBe/glass light-emitting diodes fabricated by wafer bonding technology,” Appl. Phys. Lett. 75, 154-156 (1999).
[28] R. H. Horng, D. S. Wuu, S. C. Wei, C. Y. Tseng, M. F. Huang, K. H. Chang, P. H. Liu,and K. C. Lin, “AlGaInP light-emitting diodes with mirror substrates fabricated by wafer bonding,” Appl. Phys. Lett. 75, 3054-3056 (1999).
[29] F. A. Kish and R. M. Fletcher, “AlGaInP light-emitting diodes” in High Brightness Light-Emitting Diodes (Academic, San Diego, 1997).
[30] F. A. Kish, F. M. Sterakna, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, and M. G. Craford, “Very high - efficiency semiconductor wafer-bonded transparent-substrate (Al Ga ) In P/GaP light-emitting diodes,” Appl. Phys. Lett. 64, 2839-2841 (1994).
[31] R. H. Horng, D. S. Wuu, S. C. Wei, C. Y. Tseng, M. F. Huang, K. H. Chang, P. H. Liu, and K. C. Lin, “AlGaInP light-emitting diodes with mirror substrates fabricated by wafer bonding,” Appl. Phys. Lett. 75, 3054-3056 (1999).
[32] M. R. Krames, O. B. Shchekin, R. M. Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Carford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” IEEE J. Disp. Techno. 3, 160-175 (2007).
[33] Osram Opto Semiconductors, http://www.osram-os.com/.
[34] M. R. Krames, M. O. Holcomb, G. E. Hofler, C. C. Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, and M. G. Craford, “High-power truncated-pyramid (Al x Ga 1-x ) 0.5 In 0.5 P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75, 2365-2367 (1999).
[35] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
[36] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987).
[37] Panasonic, http://www.panasonic.co.jp/.
[38] I. Schnitzer, E. Yablonvitch, C. Carneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin-film light emitting diodes,” Appl. Phys. Lett. 63, 2174-2176 (1993).
[39] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84, 855-857 (2004).
[40] D. S. Han, J. Y. Kim, S. I. Na, S. H. Kim, K. D. Lee, B. Kim and S.J.Par“Improvement of light extraction efficiency of flip-chip light-emitting diode by texturing the bottom side surface of sapphire substrate,” IEEE Photo. Techno. Lett. 18, 1406-1408 (2006).
[41] Y. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, “High Brightness GaN-Based Light-Emitting Diodes,” Journal of Display Technology 3, 118-125 (2007).
[42] 郭浩中、賴芳儀和郭守義,LED 原理與應用,p294-301,五南書局,臺北市,中華民國九十八年。
[43] Philip Lumileds Lighting, http://www.lumileds.com/.
[44] C. J. Nuese, J. J. Tietjen, J. J. Gannon, and H. F. Gossenberger, “Optimization of electroluminescent efficiencies for vapor-grown GaAsP diodes” J. Electrochem. Soc. 116, 248-253 (1969).
[45] 李宗憲,氮化鎵發光二極體之光萃取效率分析與晶片設計,國立中央大學光電科學研究所博士論文,p50-51,中華民國九十七年。
[46] D. Z. Ting and T. C. McGill, “Monte Carlo simulation of light-emitting diodelight-extraction characteristics,” Opt. Eng. 34, 3545-3553 (1995).
[47] S. J. Lee, “Analysis of light-emitting diode by Monte Carlo photo simulation,” Appl. Opt. 40, 1427-1437 (2001).
[48] C. Wiesmann, K. Bergenek, N. Linder, and U. T. Schwarz, “Photonic Crystal LEDs designing light extraction,” Laser & Photon. Rev. 3, 262-286 (2009).
[49] LambdaResearch TracePro , http://lambdares.com/.
[50] 郭浩中、賴芳儀和郭守義,LED 原理與應用,p160-161,五南書局,臺北市,中華民國九十八年。
[51] DU Jiang-feng , ZHAO Jin-xia, LU O Qian, YU Qi, XIA Jian-xin, YANG M o-hua, “Investigation of GaN-based multilayer structure films on sapphire substrate by spectroscopic ellipsometry,”China Academic Journal Electronic Publishing House. Vol. 5 No.44(2010).
[52] Yu Yangjing,Zhang Bin’en,Li Kongyi,Jiang Wei,Li Shuping,Kang Junyong,“Study of the GaN Film by Spectroscopic Ellipsometry,”China Academic Journal Electronic Publishing House.
DOI:10. 3969 /j. issn. 1003-353x. (2011)
[53] Sun Zhaoqi ,Cao Chunbin, Song Xueping, Cai Qi, “Study on Ellipsometric Spectra of ITO Film,” ACTA OPTICA SINICA. Vol. 28, No. 2(2008).
[54] 張仁憲,利用田口法優化LED路燈散熱鰭片之研究, 國立中央大學光電科學與工程學系碩士論文,p23-35,中華民國一百零一年。
指導教授 張榮森(Rong -seng Chang) 審核日期 2013-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明