博碩士論文 100233601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:13.59.61.119
姓名 桑瑞蒙(FX Reymond Sutandy)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 異質性核醣核酸蛋白K (hnRNP K) 抑制成熟miRNA-122轉錄後調控機制之研究
(Heterogeneous ribonucleoprotein K (hnRNP K) inhibits the post-transcriptional regulation of mature miRNA-122)
相關論文
★ 以生物資訊分析與實驗驗證探討大腸桿菌蛋白質體晶片找出的乳鐵胜肽B胞內目標蛋白★ 結合奈米脂粒與抗體微陣列晶片的高通量快速檢測系統之發展並應用於婦女子宮頸炎病因之診斷與研究
★ 蛋白質 G 與具硫基反應性的釕複合物之生物接合作為螢光免疫試驗的通用試劑★ 利用微陣列蛋白質晶片帥選GNRA tetraloop結合蛋白
★ 利用大腸桿菌蛋白質體晶片分析新生兒血液中的免疫球蛋白★ 利用大腸桿菌蛋白質體晶片找出參與第一型線毛表現之細菌蛋白質
★ 利用人類蛋白質體微陣列晶片探究C型肝炎病毒非轉譯區與宿主之交互作用★ 利用大腸桿菌蛋白體微陣列晶片系統性探討抗菌肽的胞內作用目標
★ 利用大腸桿菌蛋白質體晶片找出與2-氧基組胺酸交互作用之蛋白質★ 發展微珠式96孔過濾盤競爭型免疫分析法偵測硫酸紫菌素
★ 利用酵母菌蛋白質體晶片找出與前信使核糖核酸加 工因子19泛素連接?經泛素化作用之受質★ 腸道共生黴菌與酒精性肝病的相關性
★ 在大腸桿菌與酵母菌蛋白質體晶片中量化其蛋白質的濃度★ 應用大腸桿菌與酵母菌蛋白質體晶片系統性分析抗菌肽及抗生素作用之目標蛋白質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) MiRNA可募集許多RNA結合蛋白(RNA binding protein, RBP),為一個相當有趣的生物現象。儘管目前學者對於RBP調控未成熟miRNA的生合成已有相當了解,而彼等對於RBP調控成熟miRNA等生物功能則未有指出。有鑑於此.本研究利用人類蛋白質體晶片(包含約17,000個蛋白質)與miRNA-122為模式,成功篩選40個miRNA-122結合蛋白。進一步對此miRNA-122結合蛋白之生物形象進行分析,共定義4個成熟的miRNA-122結合蛋白。研究利用客製建構之miRNA-122標的序列DNA晶片,並測試此4種成熟miRNA-122結合蛋白對其干擾miRNA與其標的DNA雜和顯示,hnRNPK可結合miRNA-122 (70%)或miRNA-122標的序列(30%)進而抑制miRNA-122與miRNA-122標的DNA序列之雜和。且彼等雜和之抑制可隨hnRNP K含量呈劑量反應,充分顯示hnRNP K的專一性。體內研究利用AML12細胞株並大量表現hnRNP K顯示,hnRNP K可降低miR-122對於Aldolase A的抑制作用,且不影響AML12內源miR-122的生合成。綜觀,本研究以成熟miR122為模式發現,hnRNP K可結合miR122並抑制其轉錄後之調控。本研究乃提供一新穎之miRNA調控機制,其對於miRNA領域具有重要影響。彼等研究成果可進一步用於miRNA相關疾病之治療。
摘要(英) MiRNA regulation is an intriguing biological process that recruits several RBPs. Although the regulation of miRNA biosynthesis has been thoroughly studied, a direct regulation through binding to mature miRNA has not been reported. Using a human proteome chip which consist of ~17.000 unique human proteins and miR-122 as a model, we identified 40 miR-122-binding proteins. After further screening by their biological profiles, four mature miR-122-binding proteins were identified. We established the DNA chip containing miR-122 target sequence to test the capability of our identified proteins to interfere the hybridization between miR-122 and its target sequence. Among the four miR-122-binding proteins, only heterogenous ribonucleoprotein K (hnRNP K) showed the most significant ability (70%) to inhibit the hybridization through binding to miR-122, while mild inhibition (30%) through binding to miR-122-targetting sequence was also observed. The hybridization inhibition was proportionally related to the amount of hnRNP K in a dose response manner, indicating the specificity of this inhibition. In vivo study, overexpression of hnRNP K in AML12 cell line significantly decreased the inhibition of miR-122 toward its target mRNA of Aldolase A without affecting the biosynthesis of miR122 itself. In summary, we hypothesized that hnRNP K exhibited a novel regulation toward miR122 by directly bind to it and inhibit its function of posttranscriptional regulation. Although further study was necessary, our finding provided a new direction of miRNA regulation study which might be important for development of miRNA-related diseases therapies.
關鍵字(中) ★ miRNA-122
★ 異質性核醣核酸蛋白K
關鍵字(英)
論文目次 Table of Contents
中文摘要 i
ABSTRACT ii
ABBREVIATIONS iii
ACKNOWLEDGMENTS iv
Table of Contents v
List of Figures vii
List of Tables viii
Chapter 1 Overview of Protein Microarrays 1
1.1 History 1
1.2 Three Categories 2
Analytical Protein Microarrays 2
Functional Protein Microarrays 3
Reverse-Phase Protein Microarrays 4
1.3 Fabrication of Protein Microarrays 5
Protein Production 6
Surface Chemistry 7
1.4 Detection 7
1.5 Applications in Basic Research 9
Development of new assays 9
Detection of Protein-Binding Properties 10
Profiling monoclonal antibody specificity 15
Protein posttranslational modifications 15
1.6 Applications in Clinical Research 19
Host-microbe interactions 19
Biomarker identification 21
1.7 Future Prospects 23
Chapter 2 High throughput platform to exploring RNA proteome interactions 28
2.1 Introduction 28
2.2 Standard methods for detecting RBP-RNA interaction 29
2.3 Pull down of RBP-RNA complex 30
RNA vs RBP bait format 31
Tag-fusion strategy 32
2.4 Protein microarrays platform for RBP-RNA interaction study 33
Protein microarrays platform for RBP-RNA study 33
RNA labeling strategies and detections 34
2.5 Applications of high throughput screening of RBP-RNA interactions 35
Profiling RNA expression 35
Studying RBP-related functions and regulations 36
Diseases development studies 37
2.6 Future prospects 38
Chapter 3 Heterogeneous ribonucleoprotein K (hnRNP K) inhibits the post-transcriptional regulation of mature miRNA-122 42
3.1 Introduction 42
3.2 Materials and Methods 44
Human proteome chip assay 44
DNA chip fabrication 45
DNA chip assays for hybridization interruption of miR-122 and its target sequence 45
DNA chip assays for binding between proteins and miR-122 target sequence 46
Electrophoretic mobility shift assay (EMSA) 46
Dose response of hnRNP K for the hybridization inhibition between miR-122 and its target sequence 46
Cell line transfections 47
Western Blot 47
Quantitative reverse transcription-PCR (qRT-PCR) 48
3.3 Result 49
Identification of human mature miR-122-binding proteins 49
In vitro test for the capability of identified proteins to inhibit mature miR-122 binding to the target sequence 50
Validation of hnRNP K binding to mature miR122 52
hnRNP K inhibited miR122 activity toward its target in vivo 53
3.4 Discussion and Conclusion 54
REFERENCES 65
APPENDIXES 84
參考文獻 1. Gygi SP, Rochon Y, Franza BR, & Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Molecular and Cellular Biology 19(3):1720-1730.
2. Kopf E & Zharhary D (2007) Antibody arrays—An emerging tool in cancer proteomics. The International Journal of Biochemistry & Cell Biology 39(7–8):1305-1317.
3. Zhu H & Snyder M (2001) Protein arrays and microarrays. Current Opinion in Chemical Biology 5(1):40-45.
4. Roger P E (1989) Multi-analyte immunoassay. Journal of Pharmaceutical and Biomedical Analysis 7(2):155-168.
5. Haab BB (2005) Antibody arrays in cancer research. Molecular & Cellular Proteomics 4(4):377-383.
6. Chen C-S & Zhu H (2006) Protein Microarrays. BioTechniques 40(4):423-429.
7. Poetz O, et al. (2005) Protein microarrays: catching the proteome. Mechanisms of Ageing and Development 126(1):161-170.
8. Knezevic V, et al. (2001) Proteomic profiling of the cancer microenvironment by antibody arrays. Proteomics 1:1271-1278.
9. Talapatra A, Rouse R, & Hardiman G (2002) Protein microarrays: challenges and promises. Pharmacogenomics 3(4):527-536.
10. Brichta J, Hnilova M, & Viskovic T (2005) Generation of hapten-specific recombinant antibodies: antibody phage display technology: a review. Veterinarni Medicina 50(6):231-252.
11. Zhu H, et al. (2001) Global analysis of protein activities using proteome chips. Science 293:2101-2105.
12. Thao S, Chen C-S, Zhu H, & Escalante-Semerena JC (2010) Nε−Lysine Acetylation of a Bacterial Transcription Factor Inhibits Its DNA-Binding Activity. PLoS One 5(12):e15123.
13. Zhu H, et al. (2006) Severe acute respiratory syndrome diagnostics using a coronavirus protein microarray. Proceedings of the National Academy of Sciences of the United States of America 103(11):4011-4016.
14. Zhu J, et al. (2009) Protein Array Identification of Substrates of the Epstein-Barr Virus Protein Kinase BGLF4. Journal of Virology 83(10):5219-5231.
15. Foster MW, Forrester MT, & Stamler JS (2009) A protein microarray-based analysis of S-nitrosylation. Proceedings of the National Academy of Sciences 106(45):18948-18953.
16. Lin Y-y, et al. (2009) Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis. Cell 136(6):1073-1084.
17. Lu J-y, et al. (2008) Functional dissection of a HECT ubiquitin E3 Ligase. Molecular & Cellular Proteomics 7(1):35-45.
18. Zhu H, et al. (2000) Analysis of yeast protein kinases using protein chips. Nat Genet 26(3):283-289.
19. Paweletz CP, et al. (2001) Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncologene 20(6):1981-1989.
20. Ciaccio MF, Wagner JP, Chuu C-P, Lauffenburger DA, & Jones RB (2010) Systems analysis of EGF receptor signaling dynamics with microwestern arrays. Nat Meth 7(2):148-155.
21. Carmen S & Jermutus L (2002) Concepts in antibody phage display. Briefings in Functional Genomics and Proteomics 1(2):189-203.
22. Knappik A & Brundiers R (2009) Recombinant antibody expression and purification. in The Protein Protocols Handbook, Third Edition, ed Walker JM (Humana Press), pp 1929-1943.
23. Tabata N, et al. (2009) Rapid antibody selection by mRNA display on a microfluidic chip. Nucleic Acid Research 37(8):e64.
24. Chao G, et al. (2006) Isolating and engineering human antibodies using yeast surface display. Nat. Protocols 1(2):755-768.
25. Irving RA, Coia G, Roberts A, Nuttall SD, & Hudson PJ (2001) Ribosome display and affinity maturation: from antibodies to single V-domains and steps towards cancer therapeutics. Journal of Immunological Methods 248(1–2):31-45.
26. Jeong JS, et al. (2012) Rapid identification of monospecific monoclonal antibodies using a human proteome microarray. Molecular & Cellular Proteomics mcp.O111.016253.
27. Chen C-S, et al. (2008) A proteome chip approach reveals new DNA damage recognition activities in Escherichia coli. Nat Meth 5(1):69-74.
28. Angenendt P, Kreutzberger J, Glökler J, & Hoheisel JD (2006) Generation of high density protein microarrays by cell-free in situ expression of unpurified PCR products. Molecular & Cellular Proteomics 5:1658-1666.
29. Tao S-C & Zhu H (2006) Protein chip fabrication by capture of nascent polypeptides. Nat Biotech 24(10):1253-1254.
30. Espina V, Wulfkuhle JD, Calvert VS, III EFP, & Liotta LA (2007) Reverse phase protein microarrays for monitoring biological responses. in Cancer Genomics and Proteomics: Methods and Protocols, ed Fisher PB ( Humana Press Inc.), pp 321-336.
31. Charboneau L, et al. (2002) Utility of reverse phase protein arrays: Applications to signalling pathways and human body arrays. Briefings in Functional Genomics and Proteomics 1(3):305-315.
32. Guo A & Zhu X-Y (2006) The critical role of surface chemistry in protein microarrays. in Functional Protein Microarrays in Drug Discovery, ed Predki PF (CRC Press), pp 53-72.
33. Chen C-S, Tao S-C, & Zhu H (2007) Protein microarray technologies. in Proteomics (Methods Express Series), eds O’Connor CD & Hames BD (Scion Publishing Ltd., Bloxham, UK), pp 183-205.
34. Hall DA, Ptacek J, & Snyder M (2007) Protein microarray technology. Mechanisms of Ageing and Development 128(1):161-167.
35. Schweitzer B, et al. (2002) Multiplexed protein profiling on microarrays by rolling-circle amplification. Nat Biotech 20(4):359-365.
36. Varnum SM, Woodbury RL, & Zangar RC (2004) A protein microarray ELISA for screening biological fluids. Protein Arrays: Methods and Protocols, ed Fung ET (Humana Press, Totowa, NJ), Vol 264, pp 161-172.
37. Wang ZH & Jin G (2003) A label-free multisensing immunosensor based on imaging ellipsometry. Analytical Chemistry 75(22):6119-6123.
38. Piehler J, et al. (1997) Label-free monitoring of DNA–ligand interactions. Analytical Biochemistry 249(1):94-102.
39. Thiel AJ, Frutos AG, Jordan CE, Corn RM, & Smith LM (1997) In Situ Surface Plasmon Resonance Imagin Detection of DNA Hybridization to Oligonucleotide Arrays on Gold Surfaces. Analytical Chemistry 69(24):4948-4956.
40. Landry JP, Sun YS, Guo XW, & Zhu XD (2008) Protein reactions with surface-bound molecular targets detected by oblique-incidence reflectivity difference microscopes. Appl. Opt. 47(18):3275-3288.
41. Chen F, Lu H, Chen Z, Zhao T, & Yang G (2001) Optical real-time monitoring of the laser molecular-beam epitaxial growth of perovskite oxide thin films by an oblique-incidence reflectance-difference technique. J. Opt. Soc. Am. B 18(7):1031-1035.
42. Evans-Nguyen KM, Tao S-C, Zhu H, & Cotter RJ (2008) Protein arrays on patterned porous gold substrates interrogated with mass spectrometry: detection of peptides in plasma. Analytical Chemistry 80(5):1448-1458.
43. Yu X, Xu D, & Cheng Q (2006) Label-free detection methods for protein microarrays. Proteomics 6(20):5493-5503.
44. MacBeath G & Schreiber SL (2000) Printing proteins as microarrays for high-throughput function determination. Science 289(5485):1760-1763.
45. Popescu SC, et al. (2007) Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays. Proceedings of the National Academy of Sciences 104(11):4730-4735.
46. Hall DA, et al. (2004) Regulation of gene expression by a metabolic enzyme. Science 306(5695):482-484.
47. Ho S-W, Jona G, Chen CTL, Johnston M, & Snyder M (2006) Linking DNA-binding proteins to their recognition sequences by using protein microarrays. Proceedings of the National Academy of Sciences 103(26):9940-9945.
48. Hu S, et al. (2009) Profiling the Human Protein-DNA Interactome Reveals ERK2 as a Transcriptional Repressor of Interferon Signaling. Cell 139(3):610-622.
49. Zhu J, et al. (2007) RNA-binding proteins that inhibit RNA virus infection. Proceedings of the National Academy of Sciences 104(9):3129-3134.
50. Huang J, et al. (2004) Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips. Proceedings of the National Academy of Sciences of the United States of America 101(47):16594-16599.
51. Kung LA, et al. (2009) Global analysis of the glycoproteome in Saccharomyces cerevisiae reveals new roles for protein glycosylation in eukaryotes. Mol Syst Biol 5.
52. Schnack C, Hengerer B, & Gillardon F (2008) Identification of novel substrates for Cdk5 and new targets for Cdk5 inhibitors using high-density protein microarrays. Proteomics 8(10):1980-1986.
53. Ptacek J, et al. (2005) Global analysis of protein phosphorylation in yeast. Nature 438(7068):679-684.
54. Lu J-Y, et al. (2011) Acetylation of yeast AMPK controls intrinsic aging independently of caloric restriction. Cell 146(6):969-979.
55. Hsu K-L, Pilobello KT, & Mahal LK (2006) Analyzing the dynamic bacterial glycome with a lectin microarray approach. Nat Chem Biol 2(3):153-157.
56. Pilobello KT, Slawek DE, & Mahal LK (2007) A ratiometric lectin microarray approach to analysis of the dynamic mammalian glycome. Proceedings of the National Academy of Sciences 104(28):11534-11539.
57. Tao S-C, et al. (2008) Lectin microarrays identify cell-specific and functionally significant cell surface glycan markers. Glycobiology 18(10):761-769.
58. Vidal M, Brachmann RK, Fattaey A, Harlow E, & Boeke JD (1996) Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions. Proceedings of the National Academy of Sciences 93(19):10315-10320.
59. Krogan NJ, et al. (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084):637-643.
60. Jones RB, Gordus A, Krall JA, & MacBeath G (2006) A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 439(7073):168-174.
61. Xie Z, Hu S, Blackshaw S, Zhu H, & Qian J (2010) hPDI: a database of experimental human protein–DNA interactions. Bioinformatics 26(2):287-289.
62. Hu S, et al. (2007) A protein chip approach for high-throughput antigen identification and characterization. Proteomics 7(13):2151-2161.
63. Brass AL, et al. (2009) The IFITM proteins mediate cellular resistance to Influenza A H1N1 Virus, West Nile Virus, and Dengue Virus. Cell 139(7):1243-1254.
64. Karlas A, et al. (2010) Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature 463(7282):818-822.
65. Shapira SD, et al. (2009) A physical and regulatory map of host-influenza interactions reveals pathways in H1N1 infection. Cell 139(7):1255-1267.
66. Li R, et al. (2011) Conserved herpesvirus kinases target the DNA damage response pathway and TIP60 histone acetyltransferase to promote virus replication. Cell Host & Microbe 10(4):390-400.
67. Tu Y-H, Ho Y-H, Chuang Y-C, Chen P-C, & Chen C-S (2011) Identification of Lactoferricin B intracellular targets using an Escherichia coli proteome chip. PLoS One 6(12):e28197.
68. Ho Y-H, Sung T-C, & Chen C-S (2011) Lactoferricin B inhibits the phosphorylation of the two-component system response regulators BasR and CreB. Molecular & Cellular Proteomics mcp.M111.014720.
69. Chen C-S, et al. (2009) Identification of Novel Serological Biomarkers for Inflammatory Bowel Disease Using Escherichia coli Proteome Chip. Molecular & Cellular Proteomics 8(8):1765-1776.
70. Czajkowski M & towski MK (2011) Top scoring pair decision tree for gene expression data analysis. Software Tools and Algorithms for Biological Systems, eds Arabnia HR & Tran Q-N (Springer Science+Business Media, LLC, New York), Vol 696, pp 27-35.
71. Song Q, et al. (2009) Novel autoimmune hepatitis-specific autoantigens identified using protein microarray technology. Journal of Proteome Research 9(1):30-39.
72. Liang L, et al. (2011) Systems biology approach predicts antibody signature associated with Brucella melitensis infection in humans. Journal of Proteome Research 10(10):4813-4824.
73. Vigil A, et al. (2011) Profiling the humoral immune response of acute and chronic Q fever by protein microarray. Molecular & Cellular Proteomics M110.006304(10).
74. Luevano M, et al. (2010) High-throughput profiling of the humoral immune responses against thirteen human papillomavirus types by proteome microarrays. Virology 405(1):31-40.
75. Doolan DL, et al. (2008) Profiling humoral immune responses to P. falciparum infection with protein microarrays. Proteomics 8(22):4680-4694.
76. Tarrant MK, et al. (2012) Regulation of cK2 by phosphorylation and o-glcnacylation revealed by semisynthesis. Nature Chemical Biology 8:262-269.
77. Ambrosone A, Costa A, Leone A, & Grillo S (2012) Beyond transcription: RNA-binding proteins as emerging regulators of plant response to environmental constraints. Plant Science 182(0):12-18.
78. Castello A, Fischer B, Hentze MW, & Preiss T (2013) RNA-binding proteins in Mendelian disease. Trends in Genetics 29(5):318-327.
79. Hafner M, et al. (2010) Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP. Cell 141(1):129-141.
80. Newman MA & Hammond SM (2010) Emerging paradigms of regulated microRNA processing. Genes & Development 24(11):1086-1092.
81. Yates Luke A, Norbury Chris J, & Gilbert Robert JC (2013) The Long and Short of MicroRNA. Cell 153(3):516-519.
82. Cusack S (1999) RNA–protein complexes. Current Opinion in Structural Biology 9(1):66-73.
83. Sittka A, et al. (2008) Deep Sequencing Analysis of Small Noncoding RNA and mRNA Targets of the Global Post-Transcriptional Regulator, Hfq. PLoS Genet 4(8):e1000163.
84. McKee A, et al. (2005) A genome-wide in situ hybridization map of RNA-binding proteins reveals anatomically restricted expression in the developing mouse brain. BMC Developmental Biology 5(1):14.
85. Gagnon K & Maxwell ES (2011) Electrophoretic Mobility Shift Assay for Characterizing RNA–Protein Interaction. RNA, Methods in Molecular Biology, ed Nielsen H (Humana Press), Vol 703, pp 275-291.
86. Luo M-J & Reed R (2001) Identification of RNA Binding Proteins by UV Cross-Linking. Current Protocols in Molecular Biology, (John Wiley & Sons, Inc.).
87. Pellé R & Murphy NB (1993) In vivo UV-cross-linking hybridization: a powerful technique for isolating RNA binding proteins. Application to trypanosome mini-exon derived RNA. Nucleic Acids Research 21(10):2453-2458.
88. Pollock C, et al. (2011) Characterization of MRP RNA–protein interactions within the perinucleolar compartment. Molecular Biology of the Cell 22(6):858-866.
89. Bonifacino JS, Dell’Angelica EC, & Springer TA (2001) Immunoprecipitation. Current Protocols in Immunology 41:8.3.1–8.3.28.
90. Cao H & Lin R (2009) Quantitative evaluation of His-tag purification and immunoprecipitation of tristetraprolin and its mutant proteins from transfected human cells. Biotechnology Progress 25(2):461-467.
91. Gregan J, et al. (2007) Tandem affinity purification of functional TAP-tagged proteins from human cells. Nat. Protocols 2(5):1145-1151.
92. Kaake RM, Wang X, & Huang L (2010) Profiling of Protein Interaction Networks of Protein Complexes Using Affinity Purification and Quantitative Mass Spectrometry. Molecular & Cellular Proteomics 9(8):1650-1665.
93. Jensen K & Darnell R (2008) CLIP: Crosslinking and ImmunoPrecipitation of In Vivo RNA Targets of RNA-Binding Proteins. RNA-Protein Interaction Protocols, Methods in Molecular Biology, ed Lin R-J (Humana Press), Vol 488, pp 85-98.
94. Darnell R (2012) CLIP (Cross-Linking and Immunoprecipitation) Identification of RNAs Bound by a Specific Protein. Cold Spring Harbor Protocols 2012(11):pdb.prot072132.
95. Hafner M, et al. (2010) PAR-CliP - A Method to Identify Transcriptome-wide the Binding Sites of RNA Binding Proteins. J Vis Exp (41):e2034.
96. Laver JD, et al. (2012) Synthetic antibodies as tools to probe RNA-binding protein function. Molecular BioSystems 8(6):1650-1657.
97. Ishmael FT, et al. (2011) The Human Glucocorticoid Receptor as an RNA-Binding Protein: Global Analysis of Glucocorticoid Receptor-Associated Transcripts and Identification of a Target RNA Motif. The Journal of Immunology 186(2):1189-1198.
98. Landthaler M, et al. (2008) Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. RNA 14(12):2580-2596.
99. Yoon J-H, et al. (2012) LincRNA-p21 Suppresses Target mRNA Translation. Molecular Cell 47(4):648-655.
100. Kim CS, Seol SK, Song O-K, Park JH, & Jang SK (2007) An RNA-Binding Protein, hnRNP A1, and a Scaffold Protein, Septin 6, Facilitate Hepatitis C Virus Replication JOURNAL OF VIROLOGY 81(8):3852-3865.
101. Slobodin B & Gerst JE (2010) A novel mRNA affinity purification technique for the identification of interacting proteins and transcripts in ribonucleoprotein complexes. RNA 16(11):2277-2290.
102. Slobodin B & Gerst J (2011) RaPID: An Aptamer-Based mRNA Affinity Purification Technique for the Identification of RNA and Protein Factors Present in Ribonucleoprotein Complexes. RNA Detection and Visualization, Methods in Molecular Biology, ed Gerst JE (Humana Press), Vol 714, pp 387-406.
103. Butter F, Scheibe M, Mörl M, & Mann M (2009) Unbiased RNA–protein interaction screen by quantitative proteomics. Proceedings of the National Academy of Sciences 106(26):10626-10631.
104. Li H, et al. (2009) Identification of mRNA binding proteins that regulate the stability of LDL receptor mRNA through AU-rich elements. Journal of Lipid Research 50(5):820-831.
105. Deschênes-Furry J, et al. (2005) The RNA-binding Protein HuR Binds to Acetylcholinesterase Transcripts and Regulates Their Expression in Differentiating Skeletal Muscle Cells. Journal of Biological Chemistry 280(27):25361-25368.
106. Keene JD, Komisarow JM, & Friedersdorf MB (2006) RIP-Chip: the isolation and identification of mRNAs, microRNAs and protein components of ribonucleoprotein complexes from cell extracts. Nat. Protocols 1(1):302-307.
107. Zhao J, et al. (2010) Genome-wide Identification of Polycomb-Associated RNAs by RIP-seq. Molecular Cell 40(6):939-953.
108. Dahm GM, et al. (2012) Method for the Isolation and Identification of mRNAs, microRNAs and Protein Components of Ribonucleoprotein Complexes from Cell Extracts using RIP-Chip. J Vis Exp (67):e3851.
109. Young CL, Britton ZT, & Robinson AS (2012) Recombinant protein expression and purification: A comprehensive review of affinity tags and microbial applications. Biotechnology Journal 7(5):620-634.
110. Walker S, Scott F, Srisawat C, & Engelke D (2008) RNA Affinity Tags for the Rapid Purification and Investigation of RNAs and RNA–Protein Complexes. RNA-Protein Interaction Protocols, Methods in Molecular Biology, ed Lin R-J (Humana Press), Vol 488, pp 23-40.
111. Sutandy FXR, Qian J, Chen C-S, & Zhu H (2001) Overview of Protein Microarrays. Current Protocols in Protein Science 72:27.21.21–27.21.16.
112. de Wildt RMT, Mundy CR, Gorick BD, & Tomlinson IM (2000) Antibody arrays for high-throughput screening of antibody-antigen interactions. Nat Biotech 18(9):989-994.
113. Ho Y-H, Sung T-C, & Chen C-S (2012) Lactoferricin B Inhibits the Phosphorylation of the Two-Component System Response Regulators BasR and CreB. Molecular & Cellular Proteomics 11(4).
114. Wang Z & Gao J (2010) Microarray-Based Study of Carbohydrate–Protein Binding. Functional Glycomics, Methods in Molecular Biology, ed Li J (Humana Press), Vol 600, pp 145-153.
115. Scherrer T, Mittal N, Janga SC, & Gerber AP (2010) A Screen for RNA-Binding Proteins in Yeast Indicates Dual Functions for Many Enzymes. PLoS ONE 5(11):e15499.
116. Lu K-Y, et al. (2012) Profiling Lipid–protein Interactions Using Nonquenched Fluorescent Liposomal Nanovesicles and Proteome Microarrays. Molecular & Cellular Proteomics 11(11):1177-1190.
117. Mueller C, Liotta LA, & Espina V (2010) Reverse phase protein microarrays advance to use in clinical trials. Molecular Oncology 4(6):461-481.
118. Jeong JS, et al. (2012) Rapid Identification of Monospecific Monoclonal Antibodies Using a Human Proteome Microarray. Molecular & Cellular Proteomics 11(6).
119. Zhu H, et al. (2001) Global Analysis of Protein Activities Using Proteome Chips. Science 293(5537):2101-2105.
120. Popescu SC, Snyder M, & Dinesh-Kumar SP (2007) Arabidopsis Protein Microarrays for the High-Throughput Identification of Protein-Protein Interactions. Plant Signaling & Behavior 2(5):416-420.
121. Watson N, et al. (2006) PanoramaTM human protein function microarrays: a new approach to cancer research. AACR Meeting Abstracts 2006(1):1088-c-.
122. Solomatin S & Herschlag D (2009) Methods of Site-Specific Labeling of RNA with Fluorescent Dyes. Methods in Enzymology, ed Herschlag D (Elsevier Inc.), Vol 469, pp 47-68.
123. Walter NG (2001) Probing RNA Structural Dynamics and Function by Fluorescence Resonance Energy Transfer (FRET). Current Protocols in Nucleic Acid Chemistry:11.10.11–11.10.23.
124. Carrascosa LG, et al. (2012) Sensitive and label-free biosensing of RNA with predicted secondary structures by a triplex affinity capture method. Nucleic Acids Research 40(8):e56.
125. Chen C-S, Tao S-C, & Zhu H (2008) Protein microarray technologies. Proteomics (Methods Express Series), eds CD OC & BD H (Scion Publishing Ltd., Bloxham, UK), pp 183-205.
126. Penalva L, Burdick M, Lin S, Sutterluety H, & Keene J (2004) RNA-binding proteins to assess gene expression states of co-cultivated cells in response to tumor cells. Molecular Cancer 3(1):24.
127. Calaluce R, et al. (2010) The RNA binding protein HuR differentially regulates unique subsets of mRNAs in estrogen receptor negative and estrogen receptor positive breast cancer. BMC Cancer 10(1):126.
128. Mouland AJ, et al. (2000) The Double-Stranded RNA-Binding Protein Staufen Is Incorporated in Human Immunodeficiency Virus Type 1: Evidence for a Role in Genomic RNA Encapsidation. Journal of Virology 74(12):5441-5451.
129. Kupsch C, et al. (2012) Arabidopsis Chloroplast RNA Binding Proteins CP31A and CP29A Associate with Large Transcript Pools and Confer Cold Stress Tolerance by Influencing Multiple Chloroplast RNA Processing Steps. The Plant Cell Online 24(10):4266-4280.
130. Xia Z, et al. (2012) Cold-inducible RNA-binding protein (CIRP) regulates target mRNA stabilization in the mouse testis. FEBS letters 586(19):3299-3308.
131. DE BOER P, VOS HR, FABER AW, VOS JC, & RAUÉ HA (2006) Rrp5p, a trans-acting factor in yeast ribosome biogenesis, is an RNA-binding protein with a pronounced preference for U-rich sequences. RNA 12(2):263-271.
132. Khalil AM, et al. (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proceedings of the National Academy of Sciences 106(28):11667-11672.
133. Tsai M-C, et al. (2010) Long Noncoding RNA as Modular Scaffold of Histone Modification Complexes. Science 329(5992):689-693.
134. Vo DT, et al. (2012) The RNA-Binding Protein Musashi1 Affects Medulloblastoma Growth via a Network of Cancer-Related Genes and Is an Indicator of Poor Prognosis. The American Journal of Pathology 181(5):1762-1772.
135. Ascano M, et al. (2012) FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature advance online publication.
136. Li W, Jin Y, Prazak L, Hammell M, & Dubnau J (2012) Transposable Elements in TDP-43-Mediated Neurodegenerative Disorders. PLoS ONE 7(9):e44099.
137. Colombrita C, et al. (2012) TDP-43 and FUS RNA-binding Proteins Bind Distinct Sets of Cytoplasmic Messenger RNAs and Differently Regulate Their Post-transcriptional Fate in Motoneuron-like Cells. Journal of Biological Chemistry 287(19):15635-15647.
138. Malterer G, Dölken L, & Haas J (2011) The miRNA-targetome of KSHV and EBV in human B-cells. RNA Biology 8(1):30-34.
139. Kwak H, Park MW, & Jeong S (2011) Annexin A2 Binds RNA and Reduces the Frameshifting Efficiency of Infectious Bronchitis Virus. PLoS ONE 6(8):e24067.
140. Dunham WH, Mullin M, & Gingras A-C (2012) Affinity-purification coupled to mass spectrometry: Basic principles and strategies. PROTEOMICS 12(10):1576-1590.
141. Chuang T-W, Chang W-L, Lee K-M, & Tarn W-Y (2013) The RNA-binding protein Y14 inhibits mRNA decapping and modulates processing body formation. Molecular Biology of the Cell 24(1):1-13.
142. Mani J, et al. (2011) Alba-Domain Proteins of Trypanosoma brucei Are Cytoplasmic RNA-Binding Proteins That Interact with the Translation Machinery. PLoS ONE 6(7):e22463.
143. Toth Z, Lischka P, & Stamminger T (2006) RNA-binding of the human cytomegalovirus transactivator protein UL69, mediated by arginine-rich motifs, is not required for nuclear export of unspliced RNA. Nucleic Acids Research 34(4):1237-1249.
144. Penalva LOF & Keene JD (2004) Biotinylated tags for recovery and characterization of ribonucleoprotein complexes. BioTechniques 37:604-610.
145. Rodgers JT, Patel P, Hennes JL, Bolognia SL, & Mascotti DP (2000) Use of Biotin-Labeled Nucleic Acids for Protein Purification and Agarose-Based Chemiluminescent Electromobility Shift Assays. Analytical Biochemistry 277(2):254-259.
146. Tsai BP, Wang X, Huang L, & Waterman ML (2011) Quantitative profiling of in vivo-assembled RNA-protein complexes using a novel integrated proteomic approach. Molecular & Cellular Proteomics.
147. Cai Y, Yu X, Hu S, & Yu J (2009) A Brief Review on the Mechanisms of miRNA Regulation. Genomics, Proteomics & Bioinformatics 7(4):147-154.
148. Brown RH (2009) A Reinnervating MicroRNA. Science 326(5959):1494-1495.
149. Kincaid RP & Sullivan CS (2012) Virus-Encoded microRNAs: An Overview and a Look to the Future. PLoS Pathog 8(12):e1003018.
150. Bommer GT, et al. (2007) p53-Mediated Activation of miRNA34 Candidate Tumor-Suppressor Genes. Current Biology 17(15):1298-1307.
151. Conaco C, Otto S, Han J-J, & Mandel G (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proceedings of the National Academy of Sciences of the United States of America 103(7):2422-2427.
152. Guil S & Caceres JF (2007) The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nat Struct Mol Biol 14(7):591-596.
153. Ota H, et al. (2013) ADAR1 Forms a Complex with Dicer to Promote MicroRNA Processing and RNA-Induced Gene Silencing. Cell 153(3):575-589.
154. Burns DM, D/’Ambrogio A, Nottrott S, & Richter JD (2011) CPEB and two poly(A) polymerases control miR-122 stability and p53 mRNA translation. Nature 473(7345):105-108.
155. Bhattacharyya SN, Habermacher R, Martine U, Closs EI, & Filipowicz W (2006) Relief of microRNA-Mediated Translational Repression in Human Cells Subjected to Stress. Cell 125(6):1111-1124.
156. Kedde M, et al. (2007) RNA-Binding Protein Dnd1 Inhibits MicroRNA Access to Target mRNA. Cell 131(7):1273-1286.
157. Lu K-Y, et al. (2012) Profiling lipid-protein interactions using non-quenched fluorescent liposomal nanovesicles and proteome microarrays. Molecular & Cellular Proteomics.
158. Consortium TU (2008) The Universal Protein Resource (UniProt). Nucleic Acids Research 36(suppl 1):D190-D195.
159. Liao J-Y, et al. (2010) Deep Sequencing of Human Nuclear and Cytoplasmic Small RNAs Reveals an Unexpectedly Complex Subcellular Distribution of miRNAs and tRNA 3′ Trailers. PLoS ONE 5(5):e10563.
160. Hibio N, Hino K, Shimizu E, Nagata Y, & Ui-Tei K (2012) Stability of miRNA 5NA 5expectedly Complex Subcellular Distribution of miRNAs and tRNA 3′ Trailers. Stress. ctromobility ShiSci. Rep. 2.
161. Brennecke J, Stark A, Russell RB, & Cohen SM (2005) Principles of MicroRNA–Target Recognition. PLoS Biol 3(3):e85.
162. Elmén J, et al. (2008) Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Research 36(4):1153-1162.
163. Sutandy FXR, Qian J, Chen C-S, & Zhu H (2013) Overview of Protein Microarrays. Current Protocols in Protein Science 72:27.21.21–27.21.16.
164. Michael WM, Eder PS, & Dreyfuss G (1997) The K nuclear shuttling domain: a novel signal for nuclear import and nuclear export in the hnRNP K protein. EMBO J 16(12):3587-3598.
165. Habelhah H, et al. (2001) ERK phosphorylation drives cytoplasmic accumulation of hnRNP-K and inhibition of mRNA translation. Nat Cell Biol 3(3):325-330.
166. Ostareck-Lederer A & Ostareck DH (2004) Control of mRNA translation and stability in haematopoietic cells: The function of hnRNPs K and E1/E2. Biology of the Cell 96(6):407-411.
167. Pettit Kneller EL, Connor JH, & Lyles DS (2009) hnRNPs Relocalize to the Cytoplasm following Infection with Vesicular Stomatitis Virus. Journal of Virology 83(2):770-780.
168. Lin J-Y, et al. (2008) Heterogeneous nuclear ribonuclear protein K interacts with the enterovirus 71 5′ untranslated region and participates in virus replication. Journal of General Virology 89(10):2540-2549.
169. Winter J & Diederichs S (2011) Argonaute proteins regulate microRNA stability: Increased microRNA abundance by Argonaute proteins is due to microRNA stabilization. RNA Biology 8(6):1149-1157.
170. Tomankova T, Petrek M, & Kriegova E (2010) Involvement of microRNAs in physiological and pathological processes in the lung. Respiratory Research 11(1):159.
171. Small EM, Frost RJA, & Olson EN (2010) MicroRNAs Add a New Dimension to Cardiovascular Disease. Circulation 121(8):1022-1032.
172. Abe M & Bonini NM (2013) MicroRNAs and neurodegeneration: role and impact. Trends in cell biology 23(1):30-36.
173. Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10(10):704-714.
174. Thibault PA & Wilson JA (Targeting miRNAs to treat Hepatitis C Virus infections and liver pathology: Inhibiting the virus and altering the host. Pharmacological Research (0).
175. David R (2010) Viral infection: miRNAs help KSHV lay low. Nat Rev Micro 8(3):158-159.
指導教授 陳健生(Chien-Sheng Chen) 審核日期 2013-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明