博碩士論文 100281001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:18.216.124.8
姓名 游承書(Cheng-Shu You)  查詢紙本館藏   畢業系所 數學系
論文名稱
(On Two Immersed Boundary Methods for Simulating the Dynamics of Fluid-Structure Interaction Problems)
相關論文
★ 遲滯型細胞神經網路似駝峰行進波之研究★ 穩態不可壓縮那維爾-史托克問題的最小平方有限元素法之片狀線性數值解
★ Global Exponential Stability of Modified RTD-based Two-Neuron Networks with Discrete Time Delays★ 二維穩態不可壓縮磁流體問題的迭代最小平方有限元素法之數值計算
★ 兩種迭代最小平方有限元素法求解不可壓縮那維爾-史托克方程組之研究★ 非線性耦合動力網路的同步現象分析
★ 邊界層和內部層問題的穩定化有限元素法★ 數種不連續有限元素法求解對流佔優問題之數值研究
★ 某個流固耦合問題的有限元素法數值模擬★ 高階投影法求解那維爾-史托克方程組
★ 非靜態反應-對流-擴散方程的高階緊緻有限差分解法★ 二維非線性淺水波方程的Lax-Wendroff差分數值解
★ Numerical Computation of a Direct-Forcing Immersed Boundary Method for Simulating the Interaction of Fluid with Moving Solid Objects★ 生成對抗網路在影像填補的應用
★ 非穩態複雜流體的人造壓縮性直接施力沉浸邊界法數值模擬★ 模擬自由落體動力行為的接近不可壓縮直接施力沉浸邊界法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文主要目的為發展高效率的沉浸邊界法用於模擬流構耦合的動力行為,內容可分為下列兩個部份:

在第一部份,我們提出一種新型的懲罰式沉浸邊界法用於模擬一組包含有固體及不可延展界面的史托克流體問題。此方法的主要概念是分別引入三個懲罰式技巧,弱化原始方程組中的流體不可壓縮性、界面不可延展性和固體的剛性運動,這個調整後的統御方程組其優點在於當我們以中央差分在交錯網格上將其離散後,所有未知函數均可與流體速度聯結上關係,使得原本是要處理一個較大的線性代數方程系統,最後只需解決一個跟流體速度有關的較小矩陣問題,特別是當此方法應用到多個複合囊泡問題時將更具優勢與效率,同時我們證明了這小矩陣系統具有對稱負定性質,因此可以使用更高效率的線性求解法。此外,這個新型的懲罰式沉浸邊界法的另一個重要特性是離散格式在適當定義能量泛函下,能量將隨時間遞減,亦即該方法具無條件能量穩定性。數值實驗結果顯示此懲罰式沉浸邊界法在模擬紅血球的動力行為時,具有相當高的精確度與穩定性。

在第二部份,我們提出一個結合投影法的預測-修正型直接施力沉浸邊界法用於模擬流固耦合的動力行為,其中固體可以是靜止或者依指定的速度運動。像往常一樣,流體動力行為是以尤拉座標來描述,而拉格朗日座標則是用來描述固體邊界移動。本文所提出的方法可以被歸類為離散施力法結合預測-修正策略,藉由在流體動量方程式加入離散型的虛擬外力,此虛擬力只在整個固體上作用,以滿足流體在固體邊界上的無滑動邊界條件。更具體地說,基於固體動量變化率,此虛擬力可透過已知的固體速度和由投影法求解不可壓縮納維爾-史托克方程的速度之間的差來預測,此預測虛擬力可進一步加入動量方程再重做一次修正以便更新速度場,壓力和虛擬力。如果有必要的話,這個預測-修正步驟可進行多次迭代,以產生更一般的方法。我們提供一系列標準數值實驗來驗證此方法的簡單性和高效能,我們發現新方法的數值結果與先前在文獻中的結果有很好的一致性,而且在大多數情況下,一個校正步驟就已經足夠。
摘要(英) This thesis is devoted to developing efficient immersed boundary methods for simulating the dynamics
of fluid-structure interaction problems. It is mainly divided into the following two parts:

In the first part, we propose a novel penalty immersed boundary method for simulating the transient Stokes flow with an inextensible interface enclosing a suspended solid particle. The main idea of this approach relies on the penalty techniques by modifying the constitutive equation of Stokes flow to weaken the incompressibility condition, relating the surface divergence to the elastic tension $sigma$ to relax the interface′s inextensibility, and connecting the particle surface-velocity with the particle surface force ${mbf F}$ to regularize the particle′s rigid motion. The advantage of these regularized governing equations is that when they are discretized by the standard centered difference scheme on a staggered grid, the resulting linear system can easily be reduced by eliminating the unknowns $p_h$, $sigma_h$ and ${mbf F}_h$ directly, so that we just need to solve a smaller linear system of the velocity approximation ${mbf u}_h$. This advantage is preserved and even enhanced when such an approach is applied to the transient Stokes flow with multiple compound vesicles. Moreover, this smaller linear system is symmetric and negative-definite, which enables us to use efficient linear solvers. Another important feature of the proposed method is that the discretization scheme is unconditionally stable in the sense that an appropriately defined energy functional associated with the discrete system is decreasing and hence bounded in time. We numerically test the accuracy and stability of the immersed boundary discretization scheme. The tank-treading and tumbling motions of inextensible interface with a suspended solid particle in the simple shear flow will be studied extensively. The simulation of the motion of multiple compound vesicles will be performed as well. Numerical results illustrate the superior performance of the proposed penalty immersed boundary method.

In the second part, we propose a simple prediction-correction direct-forcing immersed boundary method, which is combined with the Choi-Moin projection method, for simulating the dynamics of fluid-solid interaction problems. The immersed solid object can be stationary or moving in the fluid with a prescribed velocity. As usual, an Eulerian description is used for the fluid dynamics, while the Lagrangian representation is employed for the immersed solid boundary. The proposed approach can be categorized as a discrete forcing method with a prediction-correction strategy, in which a virtual force of discrete type distributed on the whole solid body is introduced and added to the fluid momentum equations to accommodate the no-slip boundary condition at the immersed solid boundary. More specifically, based on the rate of moment changes of the solid body, the virtual force at the grid points can be first predicted by using the difference between the prescribed solid velocities and the computed velocities which are obtained by the Choi-Moin projection method for the incompressible Navier-Stokes equations without adding any virtual forcing term. Such predicted virtual force is then put into the momentum equations for the correction step to update the velocity field, pressure and virtual force. This prediction-correction procedure can be iterated to generate a more general method, if necessary. Numerical experiments of several benchmark problems are performed to illustrate the simplicity and high performance of the proposed prediction-correction approach. We find that our numerical results are in very good agreement with the previous works in the literature and in most cases, one correction step is good enough.
關鍵字(中) ★ 不可壓縮納維爾-史托克方程
★ 史托克方程
★ 流構耦合
★ 不可延展界面
★ 固體粒子
★ 沉浸邊界法
★ 懲罰法
★ 直接施力法
★ 投影法
★ 預測-修正
★ 穩定性
關鍵字(英) ★ incompressible Navier-Stokes equations
★ Stokes equations
★ fluid-structure interaction
★ inextensible interface
★ solid particle
★ immersed boundary method
★ penalty method
★ direct-forcing method
★ projection method
★ prediction-correction
★ stability
論文目次 1 Introduction 1
1.1 An overview of the immersed boundary method . . . . . . . . . . . . . . 1
1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 An unconditionally energy stable penalty immersed boundary method 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Regularization of the governing equations of motion . . . . . . . . . . . 8
2.3 Discretizations of the immersed boundary equations . . . . . . . . . . . . 11
2.4 Properties of the penalty immersed boundary method . . . . . . . . . . . 16
2.4.1 Skew-adjointness and adjointness in the continuous case . . . . . 16
2.4.2 Skew-adjointness and adjointness in the discrete case . . . . . . . 18
2.4.3 The difference of local stretching factors of two successive time
steps is of O(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.4 The immersed boundary discretization scheme is unconditionally
energy stable . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.1 Convergence test for the Stokes solver . . . . . . . . . . . . . . . . 21
2.5.2 Convergence test for the Stokes flow with an inextensible interface
enclosing a suspended solid particle . . . . . . . . . . . . . . 22
2.5.3 Tank-treading to tumbling motion of a compound interface under
shear flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.4 Tank-treading to tumbling motion of a compound interface under
shear flow by varying the kinematic viscosity  . . . . . . . . 26
2.5.5 Motion of multiple compound vesicles in a shear flow . . . . . . 28
2.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3 A prediction-correction direct-forcing immersed boundary method 36
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 The governing equations and the projection methods . . . . . . . . . . . 38
3.3 The prediction-correction direct-forcing immersed
boundary method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.1 A direct-forcing immersed boundary method . . . . . . . . . . . . 43
3.3.2 The prediction-correction direct-forcing immersed boundary
method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.3 The complete solution procedure . . . . . . . . . . . . . . . . . . . 46
3.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.1 Accuracy test for the lid-driven cavity enclosing an immersed
solid object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.2 Flow around a cylinder . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.3 Flow past an in-line oscillating cylinder . . . . . . . . . . . . . . . 55
3.4.4 Two cylinders moving with respect to each other . . . . . . . . . 56
3.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4 Conclusions and future work 68
Bibliography 71
參考文獻 [1] T. Allen and P. Cullis, Drug delivery systems: entering the mainstream, Science,
303 (2004), pp. 1818-1822.
[2] J. B. Bell, P. Colella, and H. M. Glaz, A second-order projection method for the incompressible
Navier-Stokes equations, Journal of Computational Physics, 85 (1989),
pp. 257-283.
[3] I. Borazjani, Fluid-structure interaction, immersed boundary-finite element
method simulations of bio-prosthetic heart valves, Computer Methods in Applied
Mechanics and Engineering, 257 (2013), pp. 103-116.
[4] D. L. Brown, R. Cortez, and M. L. Minion, Accurate projection methods for the incompressible
Navier-Stokes equations, Journal of Computational Physics, 168 (2001),
pp. 464-499.
[5] D. Calhoun, A Cartesian grid method for solving the two-dimensional
streamfunction-vorticity equations in irregular regions, Journal of Computational
Physics, 176 (2002), pp. 231-275.
[6] M.-J. Chern, Y.-H. Kuan, G. Nugroho, G.-T. Lu, and T.-L. Horng, Direct-forcing
immersed boundary modeling of vortex-induced vibration of a circular cylinder,
Journal of Wind Engineering and Industrial Aerodynamics, 134 (2014), pp. 109-121.
[7] M.-J. Chern, D. Z. Noor, C.-B. Liao, and T.-L. Horng, Direct-forcing immersed
boundary method for mixed heat transfer, Communications in Computational
Physics, 18 (2015), pp.1072-1094.
[8] M.-J. Chern,W.-C. Shiu, and T.-L. Horng, Immersed boundary modeling for interaction
of oscillatory flow with cylinder array under effects of flow direction and
cylinder arrangement, Journal of Fluids and Structures, 43 (2013), pp. 325-346.
[9] P. H. Chiu, R. K. Lin, and T.W. H. Sheu, A differentially interpolated direct forcing
immersed boundary method for predicting incompressible Navier-Stokes equations
in time-varying complex geometries, Journal of Computational Physics, 229
(2010), pp. 4476-4500.
[10] H. Choi and P. Moin, Effects of the computational time step on numerical solutions
of turbulent flow, Journal of Computational Physics, 113 (1994), pp. 1-4.
[11] J.-I. Choi, R. C. Oberoi, J. R. Edwards, and J. A. Rosati, An immersed boundary
method for complex incompressible flows, Journal of Computational Physics, 224
(2007), pp. 757-784.
[12] A. J. Chorin, Numerical solution of the Navier-Stokes equations, Mathematics of
Computation, 22 (1968), pp. 745-762.
[13] A. J. Chorin, On the convergence of discrete approximations to Navier-Stokes
equations, Mathematics of Computation, 23 (1969), pp. 341-353.
[14] A. J. Chorin and J. E. Marsden, A Mathematical Introduction to Fluid Mechanics, 2nd
Edition, Springer-Verlag, New York, 1990.
[15] R. Cortez and M. Minion, The blob projection method for immersed boundary
problems, Journal of Computational Physics, 161 (2000), pp. 428-453.
[16] M. Coutanceau and R. Bouard, Experimental determination of the main features
of the viscous flow in the wake of a circular cylinder in uniform translation. Part
1. steady flow, Journal of Fluid Mechanics, 79 (1977), pp. 231-256.
[17] F. Domenichini, On the consistency of the direct forcing method in the fractional
step solution of the Navier-Stokes equations, Journal of Computational Physics, 227
(2008), pp. 6372-6384.
[18] E. A. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusof, Combined immersedboundary
finite-difference methods for three-dimensional complex flow simulations,
Journal of Computational Physics, 161 (2000), pp. 35-60.
[19] L. J. Fauci and A. L. Fogelson, Truncated Newton methods and the modeling of
complex immersed elastic structures, Communications on Pure and Applied Mathematics,
66 (1993), pp. 787-818.
[20] D. A. Fedosov, B. Caswell, and G. E. Karniadakis, A multiscale red blood cell
model with accurate mechanics, rheology, and dynamics, Biophysical Journal, 98
(2010), pp. 2215-2225.
[21] D. Goldstein, R. Handler, and L. Sirovich, Modeling a no-slip flow boundary with
an external force field, Journal of Computational Physics, 105 (1993), pp. 354-366.
[22] B. E. Griffith, An accurate and efficient method for the incompressible Navier-
Stokes equations using the projection method as a preconditioner, Journal of Computational
Physics, 228 (2009), pp. 7565-7595.
[23] J. L. Guermond, P. Minev, and J. Shen, An overview of projection methods for
incompressible flows, Computer Methods in Applied Mechanics and Engineering, 195
(2006), pp. 6011-6045.
[24] R. D. Guy and D. A. Hartenstine, On the accuracy of direct forcing immersed
boundary methods with projection methods, Journal of Computational Physics, 229
(2010), pp. 2479-2496.
[25] K. H. de Haas, C. Blom, D. van den Ende, M. H. G. Duits, and J. Mellema, Deformation
of giant lipid bilayer vesicles in shear flow, Physical Review E, 56 (1997),
pp. 7132-7137.
[26] F. H. Harlow and J. E. Welsh, Numerical calculation of time-dependent viscous
incompressible flow of fluid with a free surface, Physics of Fluids, 8 (1965), pp.
2181-2189.
[27] T.-L. Horng, P.-W. Hsieh, S.-Y. Yang, and C.-S. You, A simple direct-forcing immersed
boundary projection method with prediction-correction for fluid-solid interaction
problems, preprint, 2016.
[28] P.-W. Hsieh, M.-C. Lai, S.-Y. Yang, and C.-S. You, An unconditionally energy stable
penalty immersed boundary method for simulating the dynamics of an inextensible
interface interacting with a solid particle, Journal of Scientific Computing, 64
(2015), pp. 289-316.
[29] M.-C. Hsu and Y. Bazilevs, Fluid-structure interaction modeling of wind turbines:
simulating the full machine, Computational Mechanics, 50 (2012), pp. 821-833.
[30] T. J. R. Hughes, W. K. Liu, and A. Brooks, Finite element analysis of incompressible
viscous flows by the penalty function formulation, Journal of Computational
Physics, 30 (1979), pp. 1-60.
[31] S. E. Hurlbut, M. L. Spaulding, and F. M. White, Numerical solution for laminar
two dimensional flow about a cylinder oscillating in a uniform stream, Journal of
Fluids Engineering, 104 (1982), pp. 214-220.
[32] C. Ji, A. Munjiza, and J. J. R. Williams, A novel iterative direct-forcing immersed
boundary method and its finite volume applications, Journal of Computational
Physics, 231 (2012), pp. 1797-1821.
[33] J. van Kan, A second-order accurate pressure-correction scheme for viscous incompressible
flow, SIAM Journal on Scientific and Statistical Computing, 7 (1986),
pp. 870-891.
[34] V. Kantsler and V. Steinberg, Orientation and dynamics of a vesicle in tanktreading
motion in shear flow, Physical Review Letters, 95 (2005), 258101.
[35] S. R. Keller and R. Skalak, Motion of a tank-treading ellipsoidal particle in a shear
flow, Journal of Fluid Mechanics, 120 (1982), pp. 27-47.
[36] J. Kim, D. Kim, and H. Choi, An immersed-boundary finite-volume method for
simulations of flow in complex geometries, Journal of Computational Physics, 171
(2001), pp. 132-150.
[37] J. Kim and P. Moin, Application of a fractional-step method to incompressible
Navier-Stokes equations, Journal of Computational Physics, 59 (1985), pp. 308-323.
[38] Y. Kim and M.-C. Lai, Simulating the dynamics of inextensible vesicles by the
penalty immersed boundary method, Journal of Computational Physics, 229 (2010),
pp. 4840-4853.
[39] Y. Kim, C. S. Peskin, Penalty immersed boundary method for an elastic boundary
with mass, Physics of Fluids, 19 (2007), 053103.
[40] M. Kraus, W. Wintz, U. Seifert, and R. Lipowsky, Fluid vesicles in shear flow,
Physical Review Letters, 77 (1996), pp. 3685-3688.
[41] M.-C. Lai,W.-F. Hu, andW.-W. Lin, A fractional step immersed boundary method
for stokes flow with an inextensible interface enclosing a solid particle, SIAM Journal
on Scientific Computing, 34 (2012), pp. B692-B710.
[42] M.-C. Lai and C. S. Peskin, An Immersed boundary method with formal secondorder
accuracy and reduced numerical viscosity, Journal of Computational Physics,
160 (2000), pp. 705-719.
[43] M.-C. Lai, Y.-H. Tseng, and H. Huang, An immersed boundary method for interfacial
flow with insoluble surfactant, Journal of Computational Physics, 227 (2008),
pp. 7279-7293.
[44] D. V. Le, B. C. Khoo, and K. M. Lim, An implicit-forcing immersed boundary
method for simulating viscous flows in irregular domains, Computer Methods in
Applied Mechanics and Engineering, 1 97 (2008), pp. 2119-2130.
[45] R. J. Leveque and Z. Li, Immersed interface methods for Stokes flow with elastic
boundaries or surface tension, SIAM Journal on Scientific Computing, 18 (1997), pp.
709-735.
[46] Z. Li and M.-C. Lai, New finite difference methods based on IIM for inextensible
interfaces in incompressible flows, East Asian Journal on Applied Mathematics, 1
(2011), pp. 155-171.
[47] C.-C. Liao, Y.-W. Chang, C.-A. Lin, and J. M. McDonough, Simulating flows with
moving rigid boundary using immersed-boundary method, Computers & Fluids,
39 (2010), pp. 152-167.
[48] A. L. F. Lima E Silva, A. Silveira-Neto, and J. J. R. Damasceno, Numerical simulation
of two-dimensional flows over a circular cylinder using the immersed boundary
method, Journal of Computational Physics, 189 (2003), pp. 351-370.
[49] M. N. Linnick and H. F. Fasel, A high-order immersed interface method for simulating
unsteady incompressible flows on irregular domains, Journal of Computational
Physics, 204 (2005), pp.157-192.
[50] C. Liu, X. Zheng, and C. H. Sung, Preconditioned multigrid methods for unsteady
incompressible flows, Journal of Computational Physics, 139 (1998), pp. 35-57.
[51] H. Luo, H. Dai, P. J. S. A. Ferreira de Sousa, and B. Yin, On the numerical oscillation
of the direct-forcing immersed-boundary method for moving boundaries,
Computers & Fluids, 56 (2012), pp. 61-76.
[52] A. A. Mayo and C. S. Peskin, An implicit numerical method for fluid dynamics
problems with immersed elastic boundaries, Contemporary Mathematics, 141
(1993), pp. 261-277.
[53] C. Misbah, Vacillating breathing and tumbling of vesicles under shear flow, Physical
Review Letters, 96 (2006), 028104.
[54] R. Mittal and G. Iaccarino, Immersed boundary methods, Annual Review of Fluid
Mechanics, 37 (2005), pp. 239-261.
[55] J. Mohd-Yusof, Interaction of Massive Particles with Turbulence, Ph.D. Dissertation,
Department of Mechanical and Aerospace Engineering, Cornell University, 1996.
[56] E. P. Newren, A. L. Fogelson, R. D. Guy, and R. M. Kirby, Unconditionally stable
discretizations of the immersed boundary equations, Journal of Computational
Physics, 222 (2007) pp. 702-719.
[57] H. Noguchi and G. Gompper, Swinging and tumbling of fluid vesicles in shear
flow, Physical Review Letters, 98 (2007), 128103.
[58] D. Z. Noor, M.-J. Chern, and T.-L. Horng, An immersed boundary method to solve
fluid-solid interaction problems, Computational Mechanics, 44 (2009), pp. 447-453.
[59] C. S. Peskin, Flow patterns around heart valves: a numerical method, Journal of
Computational Physics, 10 (1972), pp. 252-271.
[60] C. S. Peskin, The immersed boundary method, Acta Numerica, 11 (2002), pp. 479-
51
[61] D. Russell and Z. J.Wang, A Cartesian grid method for modeling multiple moving
objects in 2D incompressible viscous flow, Journal of Computational Physics, 191
(2003), pp. 177-205.
[62] E. M. Saiki and S. Biringen, Numerical simulation of a cylinder in uniform flow:
application of a virtual boundary method, Journal of Computational Physics, 123
(1996), pp. 450-465.
[63] J. S. Sohn, Y.-H. Tseng, S. Li, A. Voigt, and J. S. Lowengrub, Dynamics of multicomponent
vesicles in a viscous fluid, Journal of Computational Physics, 229 (2010),
pp. 119-144.
[64] J. M. Stockie and B. R. Wetton, Analysis of stiffness in the immersed boundary
method and implications for time-stepping schemes, Journal of Computational
Physics, 154 (1999), pp. 41-64.
[65] S.-W. Su, M.-C. Lai, and C.-A. Lin, An immersed boundary technique for simulating
complex flows with rigid boundary, Computers & Fluids, 36 (2007), pp. 313-324.
[66] K. Taira and T. Colonius, The immersed boundary method: a projection approach,
Journal of Computational Physics, 225 (2007), pp. 2118-2137.
[67] R. Temam, Sur l’approximation de la solution des ´equations de Navier-Stokes par
la m´ethode des pas fractionnaires II, Archive for Rational Mechanics and Analysis, 33
(1969), pp. 377-385.
[68] R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, Revised Ed., Elsevier
Science Publishers B.V., Amsterdam, 1984.
[69] D. J. Tritton, Experiments on the flow past a circular cylinder at low Reynolds
numbers, Journal of Fluid Mechanics, 6 (1959), pp. 547-567.
[70] Y.-H. Tseng and J. H. Ferziger A ghost-cell immersed boundary method for flow
in complex geometry, Journal of Computational Physics, 192 (2003), pp. 593-623.
[71] C. Tu and C. S. Peskin, Stability and instability in the computation of flows with
moving immersed boundaries: a comparison of three methods, SIAM Journal on
Scientific and Statistical Computing, 13 (1992), pp. 1361-1376.
[72] M. Uhlmann, An immersed boundary method with direct forcing for the simulation
of particulate flows, Journal of Computational Physics, 209 (2005), pp. 448-476.
[73] M. Vanella, P. Rabenold, and E. Balaras, A direct-forcing embedded-boundary
method with adaptive mesh refinement for fluid-structure interaction problems,
Journal of Computational Physics, 229 (2010), pp. 6427-6449.
[74] H. A. van der Vorst, Bi-CGSTAB: a fast and smoothly converging variant of Bi-
CG for the solution of nonsymmetric linear systems, SIAM Journal on Scientific and
Statistical Computing, 13 (1992), pp. 631-644.
[75] S. K. Veerapaneni, D. Gueyffier, D. Zorin, and G. Biros, A boundary integral
method for simulating the dynamics of inextensible vesicles suspended in a viscous
fluid in 2D, Journal of Computational Physics, 228 (2009), pp. 2334-2353.
[76] S. K. Veerapaneni, Y.-N. Young, P. M. Vlahovska, and J. Blawzdziewicz, Dynamics
of a compound vesicle in shear flow, Physical Review Letters, 106 (2011), 158103.
[77] Z.Wang, J. Fan, and K. Luo, Combined multi-direct forcing and immersed boundary
method for simulating flows with moving particles, International Journal of
Multiphase Flow, 34 (2008), pp. 283-302.
[78] S. Xu and Z. J.Wang, An immersed interface method for simulating the interaction
of a fluid with moving boundaries, Journal of Computational Physics, 216 (2006), pp.
454-493.
[79] X. Yang, X. Zhang, Z. Li, and G.-W. He, A smoothing technique for discrete delta
functions with application to immersed boundary method in moving boundary
simulations, Journal of Computational Physics, 228 (2009), pp. 7821-7836.
[80] T. Ye, R. Mittal, H. S. Udaykumar, and W. Shyy, An accurate Cartesian grid
method for viscous incompressible flows with complex immersed boundaries,
Journal of Computational Physics, 156 (1999), pp.209-240.
[81] N. Zhang and Z. C. Zheng, An improved direct-forcing immersed-boundary
method for finite difference applications, Journal of Computational Physics, 221
(2007), pp. 250-268.
[82] Z. Zheng and L. Petzold, Runge-Kutta-Chebyshev projection method, Journal of
Computational Physics, 219 (2006), pp. 976-991.
[83] H. Zhou and C. Pozrikidis, Deformation of liquid capsules with incompressible
interfaces in simple shear flow, Journal of Fluid Mechanics, 283 (1995), pp. 175-200.
指導教授 楊肅煜(Suh-Yuh Yang) 審核日期 2016-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明