博碩士論文 100281005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:18.218.38.125
姓名 陳韋達(Wei-Da Chen)  查詢紙本館藏   畢業系所 數學系
論文名稱
(On Space-Time Harmonic Functions for Gaussian Diffusion Processes)
相關論文
★ noone★ Probability on Trees and Networks
★ A Study on the Ruin Probabilities for the Cramér-Lundberg Model
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本論文中,我們研讀對應高斯擴散過程的正值時間空間調合函數之積分表現式。高斯擴散過程$X_{t}$在$mathbb{R}^{d}$上面滿足
[
egin{cases}
dX_{t}=BX_{t}dt+dW_{t},\
X_{0}=x_{0},
end{cases}
]
其中$B$是個$d imes d$矩陣, $W$是個$d$維布朗運動,而$x_{0}inmathbb{R}^{d}$是$X$的初始值。$g$是個正值時間空間調合函數對應到隨機過程$X_{t}$且滿足
egin{align*}
(frac{partial}{partial t}+frac{1}{2} riangle+Bxcdot abla)g=0,mbox{ }g>0mbox{ on }(0,infty) imesmathbb{R}^{d}.
end{align*}
$g$的積分表現式是
egin{align*}
g(t,x) & =int_{mathbb{R}^{d}}M_{B}(t,x;z)
ho(dz),
end{align*}
其中$
ho$是個機率分布且${M_{B}(cdot,cdot;z);zinmathbb{R}^{d}}$是一系列獨立於$g$的函數。為了獲得表現式,我們考慮一個跟$g$有關的隨機過程$X_{t}^{g}$,其中$X_{t}^{g}$滿足
[
egin{cases}
dX_{t}^{g}=frac{ abla g(t,X_{t}^{g})}{g(t,X_{t}^{g})}dt+Bcdot X_{t}^{g}dt+dW_{t},\
X_{0}^{g}=x_{0}.
end{cases}
]
我們研究$X_{t}^{g}$的極限行為當$t
ightarrowinfty$。我們先得到一個有趣的$X_{t}^{g}$表現式。然後$g$的積分表現式自然可以從$X_{t}^{g}$表現式獲得。在第一部分,我們考慮布朗運動,也就是$B=0$。在這個案例裡,我們證明$X_{t}^{g}$有線性成長速度$Y$當$t
ightarrowinfty$。也就是說
egin{align*}
frac{X_{t}^{g}}{t}
ightarrow Y,mbox{ as }t
ightarrowinfty,
end{align*}
其中$Y$是個隨機變數。此外,$X_{t}^{g}$有令人意外的表現式
egin{align*}
X_{t}^{g} & =x_{0}+tY+widehat{W}_{t},
end{align*}
其中$widehat{W}_{t}$是個獨立於$Y$的布朗運動。利用這個結果,我們獲得$g$的積分表現式,其中$
ho$(在表現式裡)是$Y$的機率分布。在第二部分,我們考慮一般的$B$。我們利用類似的方法去獲得$X_{t}^{g}$的不同成長速度和$X_{t}^{g}$表現式。然後我們可以得到$g$的積分表現式。我們也討論一些時間空間調合函數的積分表現式的應用。第一個例子是看正值(空間)調合函數的積分表現式。第二個例子是用來看邊界穿越機率的計算。
摘要(英) In this dissertation, we study the integral representation of positive
space-time harmonic function for Gaussian diffusion processes. A Gaussian
diffusion process $Y_{t}$ in $mathbb{R}^{d}$ is governed by
[
egin{cases}
dY_{t}=BY_{t}dt+dW_{t},\
Y_{0}=x_{0},
end{cases}
]
where $B$ is a $d imes d$ matrix, $W$ is a $d-$dimensional Brownian
motion, and $x_{0}inmathbb{R}^{d}$ is the initial value of $Y$.
$g$ is a positive space-time harmonic function for $Y_{t}$ which
satisfies
egin{align*}
(frac{partial}{partial t}+frac{1}{2} riangle+Bxcdot abla)g=0,mbox{ }g>0mbox{ on }(0,infty) imesmathbb{R}^{d}.
end{align*}
The integral formula of $g$ is given by
egin{align*}
g(t,x) & =int_{mathbb{R}^{d}}M_{B}(t,x;z)
ho(dz),
end{align*}
where $
ho$ is a probability distribution and ${M_{B}(cdot,cdot;z);zinmathbb{R}^{d}}$
is a family of functions which is independent of $g$. To obtain such
integral representation, we consider a process associated to $g$
deduced by $X_{t}$ which is governed by
[
egin{cases}
dX_{t}=frac{ abla g(t,X_{t})}{g(t,X_{t})}dt+Bcdot X_{t}dt+dW_{t},\
X_{0}=x_{0}.
end{cases}
]
We study the limiting behavior of $X_{t}$ as $t
ightarrowinfty$.
We first obtain an interesting representation of $X_{t}$. Then the
integral formula of $g$ will follow. In Part 1, we consider the Brownian
motion, where $B=0$. In this case, we show $X_{t}$ has linear growth
with the rate given by $Y$ as $t
ightarrowinfty$. This means
egin{align*}
frac{X_{t}^{g}}{t}
ightarrow Y,mbox{ as }t
ightarrowinfty,
end{align*}
where $Y$ is a random variable. Futhermore, $X_{t}$ has remarkable
representation
egin{align*}
X_{t} & =x_{0}+tY+widehat{W}_{t},
end{align*}
where $widehat{W}_{t}$ is a Brownian motion independent of $Y$.
Using this, we obtain an integral representation for $g$, where $
ho$
(in the representation) is the disrtibution of $Y$. In Part 2, we
consider general $B$. We apply the similar approach to obtain the
growth of $X_{t}$, with different rate and a representation of $X_{t}$.
Then we can obtain the integral representation formula of $g$. We
also discuss some applications of the integral representation of space-time
harmonic functions. The first example is the integral representation
for a positive (space) harmonic functions. The second example is the
use in the calculation of the boundary crossing probability.
關鍵字(中) ★ 時間空間調和函數
★ 高斯擴散過程
關鍵字(英)
論文目次 Contents
Abstract(Chinese) ii
Abstract iii
Part 1 1
1 Introduction 1
2 The problem and main results 3
3 Proof of Theorem 12
3.1 Proof of Theorem 1 13
3.2 Proof of Theorem 2 16
4 Applications 20
4.1 Find harmonic function by representation 20
4.2 Boundary-Crossing probability 21
References of Part 1 30
Part 2 32
1 Introduction 32
2 The problem and main results 34
3 Proof of Theorems 43
3.1 Proof of Theorem 1 43
3.2 Proof of Theorem 2 53
4 Applications 56
4.1 Representation of harmonic function 56
4.1.1 Case1: B = 0 57
4.1.2 Case2: The real part of all eigenvalues of B are positive 58
4.1.3 Case3: The real part of all eigenvalues of B are zero 64
4.1.4 Case4: The real part of all eigenvalues of B are negative 66
4.2 Boundary-Crossing probability 68
5 Appendix 76
5.1 Reference for Riccati Equation 77
參考文獻 [1] E. B. Dynkin, The Space of Exist of a Markov Process, Russian Mathematical Surveys, Volume 24, Issue
4(1969), pp. 89-157.
[2] B. S. Martin, Minimal positive harmonic functions, Trans. Amer. Math. Soc. 49 (1941), 137-172.
[3] H. Kunita and T. Watanabe, Markov processes and Martin boundaries, Bull. Amer. Math. Soc., vol. 69 (1963),
pp. 386-391.
[4] H. Kunita and T. Watanabe, Markov processes and Martin boundaries, I, Illinois J. Math. 9 (1965), 485-526.
[5] P. Salminen, Martin boundaries for some space-time Markov processes. Aarhus Universitet. Preprint Series
1978/79, No. 31.
[6] P. Salminen, Martin Boundaries for some Space-Time Markov Processes, Z. Wahrscheinlichkeitstheorie verw.
Gebiete 55(1981), 41-53.
[7] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer (1998).
[8] P. E.Protter, Stochastic Integration and Dierential Equations, Springer.
[9] M. Jeanblanc, M. Yor, M. Chesney, Mathematical Methods in Financial Markets, Springer.
[10] M. Yor, Some Aspects of Brownian Motion, Part 1, Birkhauser-Verlag, Boston, 1992.
[11] H. Cohn, On the Invariant Events of a Markov Chain, J. Austral. Math. Soc. (Series A) 28 (1979), 413-422.
[12] H. Robins, and D. Siegmund, Boundary Crossing Probability for Wiener Process and Sample Sums, The Ann.
Math. Statist. Vol. 41, No. 5 (Oct., 1970), pp. 1410-1429.
[13] L. L. Helms, Introduction to Potential Theory, volume XII of Pure and applied mathematics, Wiley, 1969.
[14] M. Cranston, S. Orey, U. Rösler, The Martin Boundary of Two Dimensional OrnsteinUhlenbeck Processes,
Probability, Statistics and Analysis, London Mathematical Society, Lecture Note Series, Vol. 79, Cambridge
University Press, Cambridge, 1983, pp. 6378.
[15] D. V. Widder, Positive Temperatures on an Innite Rod, Trans, Am. Math. Soc., Volume 55(1944), pp. 85-95.
[16] J. Lamperti and J.L. Snell, Martin Boundaries for Certain Markov chains, J. Math. Soc. Japan Volume 15,
Number 2 (1963), 113-128.
[17] U. Kuchler, on Parabolic Functions of One-Dimensional Quasidiusions, Publ. Res. Inst. Math. Sci. 16 (1980),
269-287.
[18] T. L. Lai, Space-Time Processes, Parabolic Functions and One-Dimensional Diusions, Trans. Amer. Math.
Soc. 175 (1973), 409-438.
[19] J. L. Doob, Conditional Brownian Motion and the Boundary Limit of Harmonic Functions, Bulletin de la
Société Mathématique de France (1957) Volume: 85, page 431-458.
[20] P. March, Fatou′s Theorem for the Harmonic Functions of Two-Dimensional Ornstein-Uhlenbeck Processes,
Communications on Pure and Applied Mathematics Volume 38, Issue 4, July 1985, Pages: 473497.
[21] A. Koranyi and J.C. Taylor, Minimal Solutions of the Heat Equation and Uniqueness of the Positive Cauchy
Problem on Homogeneous Spaces, Proceedings of the American Mathematical Society Vol. 94, No. 2 (Jun.,
1985), pp. 273-278.
[22] P. Lancaster and L. Rodman, Algebraic Riccati Equations, Clarendon Press, 1995.
[23] M. Musiela and T. Zariphopoulou, Portfolio Choice Under Dynamic Investment Performance Criteria, Quantitative
Finance Volume 9, 2009 - Issue 2.
指導教授 許順吉 審核日期 2017-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明