博碩士論文 100281006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.226.251.81
姓名 林淑惠(Shu-Huey Lin)  查詢紙本館藏   畢業系所 數學系
論文名稱 哈地空間在開集合上的極大函數刻畫
(Maximal function characterizations of Hardy spaces on some open sets)
相關論文
★ 奇異積分算子的加權模不等式★ Marcinkiewicz積分交換子的有界性
★ 帶變量核之奇異積分算子★ 加權赫茲形式哈弟空間上的郝曼德乘算子
★ 奇異積分的加權有界性★ 乘積空間上離散型Littlewood-Paley理論
★ Hardy-Hilbert型式的不等式和Cauchy加法映射的穩定性★ 關於section的哈代空間上的分子刻畫
★ Hardy spaces associated to para-accrective functions
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2019-9-1以後開放)
摘要(中) 在Rn 上關於哈地空間的理論最早是由Fefferman 和Stein所提出的, 他們所提出的結果提供了許多涉及卷積算子的精確估計的應用。Hardy 空間最重要的應用之一是當p ? (0, 1] 時,它們是Lebesgue 空間的良好替代品。這些在Rn 上Hardy空間理論也對於各種分析領域和偏微分方程扮演著重要角色,但是要檢查一個tempered distribution f 是否屬於Hp 是不容易的;然而Coifman and Latter 給了它原子的刻畫就解決了這個問題, Coifman 針對一維的狀況作了原子的定義,而Latter 則將它的結果做了推廣到多維的原子定義。之後,Jonsson, Sj‥ogren 和Wallin 三人則針對特別的閉子集上研究哈地空間的性質,而Miyachi 則是討論開集上的哈地空間。本文則針對特定開集做有關原子分解及極大函數刻畫。
摘要(英) The theory of Hardy spaces over Rn was originated by Fefferman and Stein , which was generalized several years ago to the case of proper subsets of Rn. The theory of Hardy spaces on the Euclidean space Rn plays an important role in various fields of analysis and partial differential equations; Their work resulted in many applications involving sharp estimates for convolution operators. It is not immediately apparent how much of a role the differential structure of Rn plays in obtaining these results. One of the most important applications of Hardy spaces is that they are good substitutes of Lebesgue spaces when p ? (0, 1]. However, it is not so easy to check whether a tempered distribution f belongs to Hp. An explicit representation theorem for functions in Hp, p ? 1, is given by Coifman and Latter, by means of a purely real variable constructure. The pioneering work of generalization was done by Jonsson, Sj‥ogren and Wallin for the case of suitable closed subsets and by Miyachi for the case of open subsets. In this article we study Hardy spaces over certain open subsets Ω ? Rn. We first define the Hardy space on Ω by means of atoms, and then give different maximal function characterizations.
關鍵字(中) ★ 極大函數 關鍵字(英) ★ Maximal function
論文目次 中文提要............................................... i
英文提要............................................... ii
目錄................................................. iii
符號說明............................................... iv
§1. Introduction....................................... 1
§2. Prelimilaries and main results..................... 5
§3. Proof of Theorem 2.2............................... 8
§4. Calder’on-Zygmund decomposition.................... 9
§5. Proof for the atomic decomposition of Hpk (Ω)......24
References............................................ 30
參考文獻 [1] M. Bownik, Anisotropic Hardy spaces and wavelets, Mem. Amer. Math. Soc. 164 (2003), no. 781,
1-122.
[2] M. Bownik, Anisotropic Triebel-Lizorkin spaces with doubling measures, J. Geom. Anal. 17 (2007),
387-424.
[3] A. P. Calderon, An atomic decomposition of distributions in parabolic Hp spaces, Adv. Math. 25
(1977), 216-225.
[4] A. P. Calderon and A. Torchinsky, Parabolic maximal functions associated with a distribution, Adv.
Math. 16 (1975), 1-64.
[5] A. P. Calderon and A. Torchinsky, Parabolic maximal functions associated with a distribution II,
Adv. Math. 24 (1977), 101-171.
[6] D.-C. Chang, G. Dafni, and E. M. Stein, Hardy spaces, BMO, and boundary value problems for
the Laplacian on a smooth domain in Rn, Trans. Amer. Math. Soc. 351 (1999), 1605-1661.
[7] D.-C. Chang, S. G. Krantz, and E. M. Stein, Hp theory on a smooth domain in Rn and elliptic
boundary value problems, J. Funct. Anal. 114 (1993), 286-347.
[8] R. R. Coifman, A real variable characterization of Hp, Studia Math. 51 (1974), 269-274.
[9] R. R. Coifman, P.-L. Lions, Y. Meyer, and S. Semmes, Compensated compactness and Hardy
spaces, J. Math. Pures Appl. 72 (1993), 247-286.
[10] C. Fe erman and E. M. Stein, Hp spaces of several variables, Acta Math. 129 (1972), 137-193.
[11] G. B. Folland and E. M. Stein, Hp Spaces on Homogeneous Group, Princeton University Press,
Princeton, N. J., 1982.
[12] A. Jonsson, P. Sjogren, and H. Wallin, Hardy and Lipschitz spaces on subsets of Rn, Studia Math.
80 (1984), 141-166.
[13] R. H. Latter, A characterization of Hp(Rn) in terms of atoms, Studia Math. 62 (1978), 93-101.
[14] C.-C. Lin and K. Stempak, Atomic Hp spaces and their duals on open subsets of Rd, Forum Math.
27 (2015), 2129-2156.
[15] A. Miyachi, Hp spaces over open subsets of Rn, Studia Math. 95 (1990), 205-228.
[16] S. Muller, Hardy space methods for nonlinear partial di erential equations, Tatra Mt. Math. Publ.
4 (1994), 159-168.
[17] S. Semmes, A primer on Hardy spaces, and some remarks on a theorem of Evans and Muller,
Comm. Partial Di erential Equations 19 (1994), 277-319.
[18] E. M. Stein Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals,
指導教授 林欽誠(Chin-Cheng Lin) 審核日期 2018-8-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明