博碩士論文 100282001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:34.200.218.187
姓名 唐富一(Fu-Yi Tang)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Schwinger Effect in Near Extremal Charged Black Holes)
相關論文
★ 由Quintessencec和Phantom組成雙純量場的暗能量模型★ 自引力球殼穿隧的Hawking輻射
★ Gauss-Bonnet 重力理論中穿隧效應的霍金輻射★ SL(4,R)理論下的漸近平直對稱轉換
★ 外加B-場下於三維球面上之土坡弦及銳牙弦★ 克爾-紐曼/共形場中的三點關聯函數
★ 時空的熱力學面向★ 四維黑洞的全息描述
★ 萊斯納-諾德斯特洛姆黑洞下的成對產生★ 自旋粒子在萊斯納-諾思通黑洞的生成
★ Pseudo Spectral Method for Holographic Josephson Junction★ 克爾-紐曼黑洞下的成對產生
★ Holographic Josephson Junction in Various Dimensions★ Characteristics of Cylindrically Symmetric Spacetimes in General Relativity
★ Force Free Electrodynamics in Extremal Kerr-Newman Black Holes★ Thermodynamics of Scalar Field in Schwarzschild Black Holes
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們在靠近視界且近極端帶電黑洞的時空下研究粒子的成對產生,由於背景電磁場以及視界的緣故,成對產生的機制有施溫格效應以及霍金輻射。首先我們研究了近視界幾何的全像對偶,其中 Reissner-Nordstr"om 黑洞的近視界幾何是 AdS$_2$ $ imes$ S$^2$,而 Kerr-Newman 黑洞的近視界幾何是 warped-AdS$_3$。
根據AdS/CFT對偶,我們可以找到相對應的二維共形場論描述,而且每個帶電黑洞的守恆量(除了質量)會有相對應的共形場論圖像。
我們也檢驗了在低能量探測場的情況下的非極端黑洞的全像描述。
對於近極端帶電黑洞時空下的成對產生,在設定了邊界條件之後,我們對於純量場和旋量場分別計算了平均產生數,真空維持量以及吸收截面。特別的是,平均產生數有熱力學解釋而且可以用哈密頓-雅可比方法來獲得同樣的結果,
其中平均產生數可以分成兩個部分來表示,一個是 AdS 時空下的施溫格效應,而另一個是 Rindler 時空下的施溫格效應。而且平均產生數和吸收截面也有二維共形場論描述。
摘要(英)
We investigate the spontaneous pair productions in the near horizon regions of
near extremal charged black holes,
and the corresponding mechanisms are Schwinger effect and Hawking radiation
due to the external electromagnetic fields and causal boundaries.
Firstly, we study the holographic dualities
for the near horizon geometries, which are
AdS$_2$ $ imes$ S$^2$ for Reissner-Nordstr"om (RN) black hole and warped-AdS$_3=$ AdS$_2$ $ imes$ S$^1$ for Kerr-Newman (KN) black hole.
According to AdS/CFT correspondence,
there are corresponding dual $2$-dimensional conformal field theory (CFT$_2$) descriptions,
and will display individual pictures associated with the "hairs" (besides mass) carried by the charged black holes.
The holographic dualities for non-extremal black hole
are also investigated in low frequencies of the probe field.
For pair productions in the near extremal charged black holes, we
calculate the
physical quantities, i.e.,
mean number of production, vacuum persistence amplitude,
and absorption cross section, for both scalar and spinor cases
after imposing the outer boundary condition.
In particular, the mean number of production
has thermal interpretations and can be evaluated by the Hamilton-Jacobi approaches,
in which the contributions of production rate can
be expressed in two parts, one is Schwinger effect in the AdS space,
and the other is the same effect in the Rindler space.
Moreover, the production rate and the absorption cross section also have dual CFT$_2$ descriptions based on the holographic dualities of charged black holes.
關鍵字(中) ★ 黑洞
★ AdS/CFT對偶
★ 施溫格效應
關鍵字(英) ★ Black Hole
★ AdS/CFT duality
★ Schwinger Effect
論文目次 1 Introduction 1
I Holographic Descriptions 7
2 Reissner-Nordstr¨om/CFT 8
2.1 Background Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Warped-AdS 3 /CFT 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Uplifted to 5D . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Central Charges . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 AdS 2 /CFT 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Hidden Conformal Symmetries . . . . . . . . . . . . . . . . . . . . . . 16
2.4.1 Greybody Factor . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.2 Electromagnetic Duality . . . . . . . . . . . . . . . . . . . . . 21
3 Kerr-Newman/CFT 23
3.1 Background Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Warped-AdS 3 /CFT 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.1 Uplifted to 5D . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.3 Central Charges . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Hidden Conformal Symmetries . . . . . . . . . . . . . . . . . . . . . . 27
3.3.1 Greybody Factor . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 General Pictures . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.3 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Monodromy Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 33
II Schwinger Effect 39
4 Scalar Particle Creation in RN Black Hole 40
4.1 Particle Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Scalar Particle Creation . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Extremal RN Black Hole . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5 Near Extremal RN Black Hole . . . . . . . . . . . . . . . . . . . . . . 45
4.6 Dyonic Particle Creation . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.7 Dual CFT Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5 Spinor Particle Creation in RN Black Hole 50
5.1 Dirac Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 Spherical Spinor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4 Asymptotic and Near Horizon Behaviors . . . . . . . . . . . . . . . . 53
5.5 Spinor Particle Creation . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.6 Dual CFT Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6 Scalar Particle Creation in KN Black Hole 58
6.1 Scalar Particle Creation . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2 Dyonic Particle Creation . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.3 Dual CFT Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.4 Thermal Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7 Spinor Particle Creation in KN Black Hole 68
7.1 Newman-Penrose Formalism . . . . . . . . . . . . . . . . . . . . . . . 68
7.2 Dirac Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.3 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.4 Dual CFT Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8 Conclusion 74
Bibliography 76
A Special Functions 82
A.1 Wittaker Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
A.2 Hypergeometric Functions . . . . . . . . . . . . . . . . . . . . . . . . 82
B Surface Charge 84
C Rindler Space 87
D 2-dimensional CFT 89
E Dirac Equation in NP Formalism 95
參考文獻 [1] J. M. Bardeen, B. Carter and S. W. Hawking, “The Four laws of black hole
mechanics,” Commun. Math. Phys. 31, 161 (1973).
[2] L. Susskind, “The World as a hologram,” J. Math. Phys. 36, 6377 (1995) [hep-th/9409089].
[3] G. ’t Hooft, “A Planar Diagram Theory for Strong Interactions,” Nucl. Phys.
B 72, 461 (1974).
[4] J. M. Maldacena, “The Large N limit of superconformal field theories and
supergravity,” Int. J. Theor. Phys. 38, 1113 (1999) [Adv. Theor. Math. Phys.
2, 231 (1998)] [hep-th/9711200].
[5] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2,
253 (1998) [hep-th/9802150].
[6] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, “Large N
field theories, string theory and gravity,” Phys. Rept. 323, 183 (2000) [hep-
th/9905111].
[7] E. D’Hoker and D. Z. Freedman, “Supersymmetric gauge theories and the AdS
/ CFT correspondence,” hep-th/0201253.
[8] E. Sezgin and P. Sundell, “Massless higher spins and holography,” Nucl. Phys.
B 644, 303 (2002) Erratum: [Nucl. Phys. B 660, 403 (2003)] [hep-th/0205131].
[9] J. D. Brown and M. Henneaux, “Central Charges in the Canonical Realization
of Asymptotic Symmetries: An Example from Three-Dimensional Gravity,”
Commun. Math. Phys. 104, 207 (1986).
[10] J. M. Bardeen and G. T. Horowitz, “The Extreme Kerr throat geometry: A
Vacuum analog of AdS(2) x S**2,” Phys. Rev. D 60, 104030 (1999) [hep-th/9905099].
[11] M. Guica, T. Hartman, W. Song and A. Strominger, “The Kerr/CFT Correspondence,” Phys. Rev. D 80, 124008 (2009) [arXiv:0809.4266 [hep-th]].
[12] V. Balasubramanian, J. de Boer, M. M. Sheikh-Jabbari and J. Simon, “What
is a chiral 2d CFT? And what does it have to do with extremal black holes?”
JHEP 1002, 017 (2010) [arXiv:0906.3272 [hep-th]].
[13] I. Bredberg, T. Hartman, W. Song and A. Strominger, “Black Hole Superradi-
ance From Kerr/CFT,” JHEP 1004, 019 (2010) [arXiv:0907.3477 [hep-th]].
[14] I. Bredberg, C. Keeler, V. Lysov and A. Strominger, “Cargese Lectures on
the Kerr/CFT Correspondence,” Nucl. Phys. Proc. Suppl. 216, 194 (2011)
[arXiv:1103.2355 [hep-th]].
[15] A. Castro, A. Maloney and A. Strominger, “Hidden Conformal Symmetry of the
Kerr Black Hole,” Phys. Rev. D 82, 024008 (2010) [arXiv:1004.0996 [hep-th]].
[16] G. Compere, “The Kerr/CFT correspondence and its extensions: a comprehensive review,” Living Rev. Rel. 15, 11 (2012) [arXiv:1203.3561 [hep-th]].
[17] G. Barnich and F. Brandt, “Covariant theory of asymptotic symmetries, conservation laws and central charges,” Nucl. Phys. B 633, 3 (2002) [hep-th/0111246].
[18] T. Hartman, K. Murata, T. Nishioka and A. Strominger, “CFT Duals for Extreme Black Holes,” JHEP 0904, 019 (2009) [arXiv:0811.4393 [hep-th]].
[19] G. Compere, K. Murata and T. Nishioka, “Central Charges in Extreme Black
Hole/CFT Correspondence,” JHEP 0905, 077 (2009) [arXiv:0902.1001 [hep-th]].
[20] T. Hartman, W. Song and A. Strominger, “Holographic Derivation of Kerr-
Newman Scattering Amplitudes for General Charge and Spin,” JHEP 1003,
118 (2010) [arXiv:0908.3909 [hep-th]].
[21] T. Hartman and A. Strominger, “Central Charge for AdS(2) Quantum Gravity,” JHEP 0904, 026 (2009) [arXiv:0803.3621 [hep-th]].
[22] A. Castro and F. Larsen, “Near Extremal Kerr Entropy from AdS(2) Quantum
Gravity,” JHEP 0912, 037 (2009) [arXiv:0908.1121 [hep-th]].
[23] A. Castro, J. M. Lapan, A. Maloney and M. J. Rodriguez, “Black Hole
Monodromy and Conformal Field Theory,” Phys. Rev. D 88, 044003 (2013)
[arXiv:1303.0759 [hep-th]].
[24] A. Castro, J. M. Lapan, A. Maloney and M. J. Rodriguez, “Black Hole Scatter-
ing from Monodromy,” Class. Quant. Grav. 30, 165005 (2013) [arXiv:1304.3781
[hep-th]].
[25] A. Castro, E. Hijano, A. Lepage-Jutier and A. Maloney, “Black Holes and
Singularity Resolution in Higher Spin Gravity,” JHEP 1201, 031 (2012)
[arXiv:1110.4117 [hep-th]].
[26] M. Cvetic, G. W. Gibbons and C. N. Pope, “Universal Area Product Formulae
for Rotating and Charged Black Holes in Four and Higher Dimensions,” Phys.
Rev. Lett. 106, 121301 (2011) [arXiv:1011.0008 [hep-th]].
[27] J. S. Schwinger, “On gauge invariance and vacuum polarization,” Phys. Rev.
82, 664 (1951).
[28] M. K. Parikh and F. Wilczek, “Hawking radiation as tunneling,” Phys. Rev.
Lett. 85, 5042 (2000) [hep-th/9907001].
[29] M. R. Garousi and A. Ghodsi, “The RN/CFT Correspondence,” Phys. Lett. B
687, 79 (2010) [arXiv:0902.4387 [hep-th]].
[30] C. M. Chen, J. R. Sun and S. J. Zou, “The RN/CFT Correspondence Revisited,” JHEP 1001, 057 (2010) [arXiv:0910.2076 [hep-th]].
[31] C. M. Chen, Y. M. Huang and S. J. Zou, “Holographic Duals of Near-extremal
Reissner-Nordstrom Black Holes,” JHEP 1003, 123 (2010) [arXiv:1001.2833 [hep-th]].
[32] C. M. Chen and J. R. Sun, “Hidden Conformal Symmetry of the Reissner-
Nordstrøm Black Holes,” JHEP 1008, 034 (2010) [arXiv:1004.3963 [hep-th]].
[33] C. M. Chen, Y. M. Huang, J. R. Sun, M. F. Wu and S. J. Zou, “On Holographic
Dual of the Dyonic Reissner-Nordstrom Black Hole,” Phys. Rev. D 82, 066003
(2010) [arXiv:1006.4092 [hep-th]].
[34] E. J. Kuo and Y. Yang, “Extremal RN/CFT in Both Hands Revisited,” Phys.
Lett. B 755, 249 (2016) [arXiv:1512.02934 [hep-th]].
[35] C. M. Chen, Y. M. Huang, J. R. Sun, M. F. Wu and S. J. Zou, “Twofold
Hidden Conformal Symmetries of the Kerr-Newman Black Hole,” Phys. Rev.
D 82, 066004 (2010) [arXiv:1006.4097 [hep-th]].
[36] C. M. Chen and J. R. Sun, “The Kerr-Newman/CFTs Correspondence,” Int.
J. Mod. Phys. Conf. Ser. 07, 227 (2012) [arXiv:1201.4040 [hep-th]].
[37] B. Chen and J. j. Zhang, “General Hidden Conformal Symmetry of 4D Kerr-
Newman and 5D Kerr Black Holes,” JHEP 1108, 114 (2011) [arXiv:1107.0543
[hep-th]].
[38] B. Chen, C. M. Chen and B. Ning, “Holographic Q-picture of Kerr-Newman-
AdS-dS Black Hole,” Nucl. Phys. B 853, 196 (2011) [arXiv:1010.1379 [hep-th]].
[39] B. Chen and J. j. Zhang, “Electromagnetic Duality in Dyonic RN/CFT Correspondence,” Phys. Rev. D 87, 081505 (2013) [arXiv:1212.1960 [hep-th]].
[40] C. M. Chen, S. P. Kim, I. C. Lin, J. R. Sun and M. F. Wu, “Spontaneous
Pair Production in Reissner-Nordstrom Black Holes,” Phys. Rev. D 85, 124041
(2012) [arXiv:1202.3224 [hep-th]].
[41] C. M. Chen, J. R. Sun, F. Y. Tang and P. Y. Tsai, “Spinor particle creation in
near extremal ReissnerVNordstrom black holes,” Class. Quant. Grav. 32, no.
19, 195003 (2015) [arXiv:1412.6876 [hep-th]].
[42] C. M. Chen, J. R. Sun and F. Y. Tang, “Pair Production In Near Extremal Charged Black Holes,” arXiv:1510.00141 [hep-th].
[43] C. M. Chen, S. P. Kim, J. R. Sun and F. Y. Tang, “Pair Production in Near
Extremal Kerr-Newman Black Holes,” Phys. Rev. D 95, no. 4, 044043 (2017)
[arXiv:1607.02610 [hep-th]].
[44] C. M. Chen, S. P. Kim, J. R. Sun and F. Y. Tang, “Pair Production of Scalar
Dyons in Kerr-Newman Black Holes,” arXiv:1705.10629 [hep-th].
[45] S. P. Kim and D. N. Page, “Improved Approximations for Fermion Pair Pro-
duction in Inhomogeneous Electric Fields,” Phys. Rev. D 75, 045013 (2007)
[hep-th/0701047].
[46] R. G. Cai and S. P. Kim, “One-Loop Effective Action and Schwinger Effect in
(Anti-) de Sitter Space,” JHEP 1409, 072 (2014) [arXiv:1407.4569 [hep-th]].
[47] S. P. Kim, H. K. Lee and Y. Yoon, “Thermal Interpretation of Schwinger Effect
in Near-Extremal RN Black Hole,” arXiv:1503.00218 [hep-th].
[48] S. P. Kim, “Schwinger effect, Hawking radiation and gauge-gravity relation,”
Int. J. Mod. Phys. A 30, no. 28&29, 1545017 (2015) [arXiv:1506.03990 [hep-th]].
[49] W. G. Unruh, “Notes on black hole evaporation,” Phys. Rev. D 14, 870 (1976).
[50] S. Deser and O. Levin, “Accelerated detectors and temperature in (anti)-de
Sitter spaces,” Class. Quant. Grav. 14, L163 (1997) [gr-qc/9706018].
[51] M. Henningson and K. Sfetsos, “Spinors and the AdS / CFT correspondence,”
Phys. Lett. B 431, 63 (1998) [hep-th/9803251].
[52] C. Gabriel and P. Spindel, “Quantum charged fields in Rindler space,” Annals
Phys. 284, 263 (2000) [gr-qc/9912016].
[53] J. L. Cardy, “Operator Content of Two-Dimensional Conformally Invariant
Theories,” Nucl. Phys. B 270, 186 (1986).
[54] I. Semiz, “The Klein-Gordon equation is separable on the dyon black hole
metric,” Phys. Rev. D 45, 532 (1992) Erratum: [Phys. Rev. D 47, 5615 (1993)].
[55] D. N. Page, “Dirac Equation Around a Charged, Rotating Black Hole,” Phys.
Rev. D 14, 1509 (1976).
[56] H. A. Camargo and M. Socolovsky, “Rindler approximation to Kerr-Newman
black hole,” Eur. Phys. J. Plus 130, no. 11, 230 (2015) [arXiv:1405.5261 [gr-qc]].
[57] P. K. Townsend, “Black holes: Lecture notes,” gr-qc/9707012.
[58] S. M. Carroll, “Spacetime and geometry: An introduction to general relativity,”
San Francisco, USA: Addison-Wesley (2004) 513 p
[59] S. Chandrasekhar, “The mathematical theory of black holes,” OXFORD, UK:
CLARENDON (1985) 646 P.
[60] K. Becker, M. Becker and J. H. Schwarz, “String theory and M-theory: A
modern introduction,”
[61] B. Zwiebach, “A first course in string theory,” Cambridge, UK: Univ. Pr. (2009)
673 p.
指導教授 陳江梅(Chiang-Mei Chen) 審核日期 2017-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明