博碩士論文 100282004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.190.152.38
姓名 顏聰文(Tsung-Wen Yen)  查詢紙本館藏   畢業系所 物理學系
論文名稱 金屬和半導體奈米粒子的最佳化構形和磁性性質
(The lowest energy structure and magnetic properties of metallic and covalent clusters)
相關論文
★ 金屬叢集的融化現象★ 帶電膠體系統之液態-液態/固態相變研究
★ 低濃度電解質在奈米管內異常的擴散和導電性★ 一價和多價叢集原子的熱穩定現象
★ 金屬與合金分子叢集的結構★ 物理系統之能量與焓分佈之統計力學研究
★ 膠體系統平衡相域與動態凝聚之研究★ 合金金屬叢集的溫度效應
★ 介面膠體叢聚現象的理論研究★ 帶電膠體懸浮液的相圖與液態-玻璃相變研究
★ 膠體相圖之理論計算★ 膠體、棒狀粒子混合系統之相圖的理論分析
★ 利用時間序列的統計方法研究金屬叢集的動力學★ 由分子動力學模擬探討層狀石墨烯的成長與碳化矽基板上多層石墨烯的熱穩定性
★ 金銅合金金屬叢集(N=38)的磁性性質研究★ 膠體、盤狀粒子混合系統的兩階段動態相變區域
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 此論文的第一部分我們提出了能夠非常有效率搜尋奈米粒子的最佳化構形的演算法。肇因於離子和價電子在半導體中的複雜偶合作用,我們必須提出一個能夠不預設前提下卻能夠有效搜尋系統的最優化構形的演算法。我們研究的系統為碳奈米粒子在顆數3~24這個範圍的構形變化。此外,我們和文獻上其他相關的理論工作結果做了比較和評論。論文的第二個部分首先我們使用了一個被公認為最好的構形演算法 (P. J. Hsu, S. K. Lai, J. Chem. Phys. 124 (2006) 0447110) 來得到銀銅合金奈米粒子 (粒子數為38) 的最穩定構形。緊接著我們在這個最佳化構形的基礎上,把電子間的交互作用透過一個更嚴謹的密度泛函理論來進一步分析。我們特別關注於系統的電性和磁性性質。數據結果顯示對於某些高度對稱的奈米粒子會意外地帶有靜磁矩。我們提出使用分子點群理論以及克萊門-尼爾森的模型來解釋靜磁矩之所以會出現其背後的物理機制為何。
摘要(英) In the first part, we proposed a modified basin hopping method which is very robust in searching the lowest energy structure of carbon clusters CN ( N=3-24). Due to the intricate coupling among ions and valence electrons in covalent systems, an unbiased optimization is necessary to locate the lowest energy structures. We have obtained the topological transition from a linear chain, a monocyclic ring to a polycyclic ring, and a fullerene/cage-like geometry and we also compared our structural findings with theoretical works in this field. In the second part of the thesis we first utilized a state-of-the-art algorithm that applies the empirical Gupta potential to search for the lowest energy structures of AgnCu38-n bimetallic clusters. We investigated from the results of DFT the charge density and spin charge density dispersions as well as magnetic properties of this system. It was found that the clusters at n=1-4, 24 as well as the two pure clusters Ag and Cu uncommonly carry net magnetic moments. We invoked the point group theory to explain these unexpected magnetism by analyzing the molecular orbital energy levels (MOELs) of these clusters. The MOELs were, however calculated by symmetry restricted DFT. and proposed to use point group theory for further explanation of these unexpected net magnetism.
關鍵字(中) ★ 奈米粒子
★ 磁性性質
★ 構形最佳化
關鍵字(英) ★ nanoparticle
★ magnetic property
★ geometry optimization
論文目次 誌謝 i
PREFACE ii
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
PART I 1
Chapter 1 INTRODUCTION 2
Chapter 2 COMPUTATIONAL METHODS 9
2.1 DFTB2 METHOD 9
2.1.1 Theory 9
2.1.2 Parameter set for DFTB2 10
2.2 Modified BH technique 11
2.3 DFT optimization 12
Chapter 3 RESULTS AND DISCUSSION 14
3.1 Topological transitions of Cn (3≤ n ≤24) 14
3.2 Different size ranges and comparison with early studies 19
3.3 Concluding remarks and perspectives 26
3.4 Appendix A: Modified Basin Hopping Technique 28
REFERENCES 32
PART II 36
Chapter 5 Introduction 37
Chapter 6 Theoretical methods 42
6.1 Atomic structures: PTMBHPGA 42
6.2 Atomic structures: point group symmetry 43
6.3 Atomic structures: DFTM 46
Chapter 7 Results and discussion 48
7.1 Atomic Structures and cluster stability 48
7.2 Charge density and Spin charge density distributions 55
7.3 Interpretation of the Magnetic Moments 64
7.4 Conclusion 77
7.5 Appendix A: The SALC method 79
References 82
PART III 86
Chapter 9 Background introduction 87
9.1 What are nanoclusters? 87
9.2 Pedagogical perspectives 87
9.2.1 Thermodynamics properties 87
9.2.2 Electronic and magnetic properties 89
9.3 Industrial perspective 90
9.4 Theoretical works which are related to nanoclusters. 90
9.5 Summary 91
References 92
Chapter 10 Global optimization 94
10.1 Introduction 94
10.2 Genetic algorithm 97
10.3 Basin Hopping 100
References 102
Chapter 11 DFT methodology 104
11.1 Hartree-Fock methods and density functional theory 104
References 109
Chapter 12 Jellium model and Clemenger-Nilsson model 110
References 114
參考文獻 [1] P. Freivogel, J. Fulara, and J. Maier, Astrophys. J. 431, L151 (1994).
[2] J. Fulara, D. Lessen, P. Freivogel and J. P. Maier, Nature 366, 439 (1993).
[3] H. Kroto, and K. McKay, Nature 331, 328 (1988).
[4] P. Gerhardt, S. Löffler, and K.H. Homann, Chem. Phys. Lett. 137, 306 (1987).
[5] Q. L. Zhang, S. C. O′Brien, J. R. Heath, Y. Liu, R. F. Curl, H. W. Kroto, R. E.
Smalley, J. Phys. Chem. 90, 525 (1986).
[6] H. Koinuma, T. Horiuchi, K. Inomata, H. K. Ha, K. Nakajima and K. A.
Chaudhary, Pure and Appl. Chem. 68, 1151 (1996).
[7] M. D. Allendorf, J. Electrochem. Soc. 140, 747 (1993).
[8] M. F. Jarrold, Nature 407, 26 (2000).
[9] D. W. Brenner, Phys. Rev. B 42, 9458 (1990).
[10] D.W. Brenner, Phys. Rev. B 46, 1948 (1992).
[11] J. Hur and S. J. Stuart, J. Chem. Phys. 137, 054102 (2012).
[12] Y. Zeiri, Phys. Rev. E 51, R2769 (1995).
[13] J. A. Niesse and H. R. Mayne, J. Chem. Phys. 105, 4700 (1996).
[14] D. J. Wales and J. P. Doye, J. Phys. Chem. A 101, 5111 (1997).
[15] Z. Li and H. A. Scheraga, Proc. Natl. Acad. Sci. U.S.A. 84, 6611 (1987).
[16] B. Assadollahzadeh and P. Schwerdtfeger, J. Chem. Phys. 131, 064306 (2009).
[17] B. Kiran, S. Balusu, H. J. Zhai, S. Yoo, X. C. Zeng and L. S. Wang, Proc. Natl.Acad. Sci. 102, 961 (2005).
[18] E. Aprà, R. Ferrando and A. Fortunelli, Phys. Rev. B 73, 205414 (2006).
[19] D. Jiang and M. Walter, Phys. Rev. B 84, 193402 (2011).
[20] G. Seifert and J. O. Joswig, WIREs Comput. Mat. Sci. 2, 456 (2012).
[21] M. Elsner and G. Seifert, Philos. Trans. R. Soc. A 372, 20120483 (2014).
[22] Q. Cui and M. Elstner, Phys. Chem. Chem. Phys. 16, 14368 (2014).
[23] S. K. Lai, P. J. Hsu, K. L. Wu, W. K. Liu and M. Iwamatsu, J. Chem. Phys. 117, 10715 (2002).
[24] P. J. Hsu and S. K. Lai, J. Chem. Phys. J. Chem. Phys. 124, 044711 (2006).
[25] L. Montagnon and F. Spiegelman, J. Chem. Phys. 127, 084111 (2007).
[26] K. Raghavachari, G. W. Trucks, J. A. Pople and M. Head-Gordon, Chem.
Phys. Lett. 157, 479 (1989).
[27] S. Yoo and X. C. Zeng, Angew. Chem. Int. Ed. 44, 1491 (2005).
[28] J. Bai, Li. F. Cui, J. Wang, S. Yoo, X. Li, J. Jellinek, C. Koehler, T.
Frauenheim, L. S. Wang, and X. C. Zeng, J. Phys. Chem. A 110, 908 (2006).
[29] S. Heiles and R. L. Johnston, Int. J. Quantum Chem. 113, 2091 (2013).
[30] H. ur Rehman, M. Springborg, and Y. Dong, J. Phys. Chem. A 115, 2005
(2011).
[31] I. Rata, A. A. Shvartsburg, M. Horoi, T. Frauenheim, K. W. M. Siu, and K. A.
Jackson, Phys. Rev. Lett. 85, 546 (2000).
[32] D. M. Deaven and K. M. Ho, Phys. Rev. Lett. 75, 288 (1995).
[33] Z. Chen, X. Jiang, J. Li, and S. Li, J. Chem. Phys. 138, 214303 (2013).
[34] S. Hobday and R. Smith, Mol. Simul. 25, 93 (2000); J. Chem. Soc. Faraday
Trans. 93, 3919 (1997). The lowest energy values in this second reference
have been improved by the first one.
[35] J. P. K. Doye, Phys. Rev. E 62, 8753 (2000).
[36] K. A. Jackson, M. Horoi, I. Chaudhuri and T. Frauenheim, Phys. Rev. Lett. 93, 013401 (2004).
[37] D. Liu and J. Nocedal, Math. Program. B 45, 503 (1989).
[38] D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, and R. Kaschner, Phys. Rev.
B 51, 12947 (1995).
[39] G. Seifert, D. Porezag, T. Frauenheim, Int. J. Quant. Chem. 58, 185 (1996).
[40] M. Elstner, D. Porezag, G. Jungnickel, M. Haugk, T. Frauenheim, S. Suhai,
and G. Seifert, Phys. Rev. B 58, 7260 (1998).
[41] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[42] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[43] W. Matthew and C. Foulkes, Phys. Rev. B 39, 12520 (1989).
[44] B. Aradi, B. Hourahine, and T. Frauenheim, J. Phys. Chem. A 111, 5678
(2007); http://www.dftb.org.
[45] T. Krüger, M. Elstner, P. Schiffels and T. Frauenheim, J. Chem. Phys. 122,
114110 (2005).
[46] A.M. Koster, G. Geudtner, P. Calaminici, M. E. Casida, V.D. Dominguez, R.
Flores-Moreno, G.U. Gamboa, A. Goursot, T. Heine, A. Ipatov, F. Janetzko, J.
M. del Campo, J. U. Reveles, A. Vela, B. Zuniga-Gutierrez and D. R.
Salahub, deMon2k, Version 3, The deMon developers, Cinvestav, Mexico City
(2011); http://www.demon-software.com.
[47] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
[48] W. E. Barth and R. G. Lawton, J. Am. Chem. Soc. 93, 1730 (1971).
[49] W. D. Knight, K. Clemenger, W. A. de Heer, W. A. Saunders, M. Y. Chou,
and M. L. Cohen, Phys. Rev. Lett. 52, 2141 (1984).
[50] W. Qin, W. C. Lu, L.Z. Zhao, Q. J. Zang, C. Z. Wang and K. M. Ho, J. Phys.:
Condens. Matter 21, 455501 (2009).
[51] J. Hutter, H. P. Lüthi and F. Diederich, J. Am. Chem. Soc. 116, 750 (1994).
[52] R. O. Jones and G. Seifert, Phys. Rev. Lett. 79, 443 (1997).
[53] R. O. Jones, J. Chem. Phys. 110, 5189 (1999).
[54] M. Afshar, M. Babaei and A. H. Kordbacheh, J. Theor. Appl. Phys. 7, 59
(2013).
[55] H. J. Hwang, A. van Orden, K. Tanaka, E. W. Kuo, J. R. Heath and R. J.
Saykally, Mol. Phys. 79, 769 (1993).
[56] Z. Slanina, J. Kurtz and L. Adamowicz, Mol. Phys. 76, 387 (1992).
[57] V. I. Baranovski, Chem. Phys. Lett. 408, 429 (2005).
[58] J. M. L. Martin and P. R. Taylor, J. Phys. Chem. 100, 6047 (1996).
[59] J. M. L. Martin, J. El-Yazal, J. P. Francois, Chem. Phys. Lett. 242, 570 (1995).
[60] K. Raghavachari and J. S. Binkley, J. Chem. Phys. 87, 2191 (1987).
[61] V. Parasuk and J. Almlof, Theor. Chim. Acta 83, 227 (1992).
[62] M. Gaus, A. Goez and M. Elstner, J. Chem. Theor. Comput. 9, 338 (2013).
[63] S. K. Lai, S. Icuk, T. W. Yen and Y. H. Tang, to be published.
[64] Y. Z. Tan, S. Y. Xie, R. B. Huang amd L. S. Zheng, Nature Chem. 1, 450
(2009).
[65] A. Rodriguez-Fortea, S. Irle and J. M. Poblet, WIREs Comput. Mol. Sci. 1,
350 (2011).
[66] Z. Slanina, K. Ishimura, K. Kobayashi and S. Nagase, Chem. Phys. Lett. 384,
114 (2004).
[67] H. W. Kroto, Nature 329, 529 (1987).
[68] D. M. Cox, D. J. Trevor, K. C. Reichmann and A. Kaldor, J. Am. Chem. Soc.
108, 2457 (1986).
[69] H. Prinzbach, A. Weiler, P. Landenberger, F. Wahl, J. Wörth, L. T. Scott, M.
Gelmont, D. Olevano and B. Issendorff, Nature 407, 60 (2000).
[70] S. Sokolova, A. Lüchow, J. B. Anderson, Chem. Phys. Lett. 323, 229 (2000).
[71] W. An, Y. Gao, S. Bulusu, and X. C. Zeng, J. Chem. Phys. 122, 204109
(2005).
[72] C. Allison and K. A. Beran, J. Mol. Struct. (Theochem) 680, 59 (2004).
指導教授 賴山強(San-Kiong Lai) 審核日期 2015-12-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明